Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom leiten en miniature - mit einem Draht aus DNA?

24.07.2003


VolkswagenStiftung bewilligt knapp zwei Millionen Euro für drei neue Vorhaben in den Materialwissenschaften

... mehr zu:
»DNA »Materie

Materialien nehmen eine Schlüsselrolle bei der Entwicklung neuer Technologien ein. Von neuen Materialien erhofft man sich unter anderem Miniaturisierung, Gewichtsminderung, bessere Umwelt- und Bioverträglichkeit oder auch geringeren Rohstoff- und Energieverbrauch - und dies bei gleichzeitig optimierten strukturellen und funktionellen Eigenschaften. Mit ihrer Förderinitiative "Komplexe Materialien: Verbundprojekte der Natur-, Ingenieur- und Biowissenschaften" will die VolkswagenStiftung Wissenschaftler anregen, die traditionellen Grenzen der Werkstoffdisziplinen zu überschreiten und von Erkenntnissen und Erfahrungen anderer Gebiete einschließlich der Biowissenschaften zu profitieren. Für drei neue Vorhaben in ihrer Initiative zu den "Komplexen Materialien" stellt die Volkswagen-Stiftung jetzt knapp zwei Millionen Euro bereit. Die Verbundprojekte zeichnet unter anderem aus, dass sie größtenteils von Nachwuchswissenschaftlern getragen werden.

1. gefördertes Projekt


Mit 770.000 Euro drei Jahre lang gefördert wird das aus sechs Arbeitsgruppen bestehende Verbundvorhaben "DNA-based materials for the self-assembly of electrical circuits" an den Universitäten Aachen und Marburg, am Forschungszentrum Karlsruhe und am Technion - Israel Institute of Technology in Haifa.

Das Projekt ist beispielhaft für ein Vorhaben, bei dem es um die Kopplung von biologischer und unbelebter Materie geht. Ziel der Forscher ist der Umbau eines DNA-Moleküls zu einem elektrisch leitfähigen "Nanodraht". Und so wie einen dünnen Draht, der Strom leitet, kann man sich einen entsprechend modifizierten DNA-Strang in der Tat vorstellen. Zwei Wege wollen die Wissenschaftler verfolgen: Zum einen streben sie an, Metall-Nanopartikel in so engen Abständen an einen DNA-Strang zu binden, dass dieser elektrisch leitfähig wird - hier wird also von außen etwas an das Molekül angekoppelt. Der zweite Ansatz hingegen sieht vor, bestimmte Bausteine des DNA-Molekülgerüsts (und zwar bestimmte Basen) durch metallionenhaltige Basen zu ersetzen - es wird folglich die innere Struktur der DNA selbst verändert. In beiden Fällen erhält man einen elektrisch leitfähigen Draht in extrem kleinen Ausmaßen. Nimmt man konkrete Anwendungen in den Blick, so könnten solche "DNA-Nanodrähte" beispielsweise einmal als Leiterbahnen Schaltkreise in Miniaturformat ermöglichen. Hauptansprechpartner des Verbunds sind Professor Dr. Ulrich Simon vom Institut für Anorganische Chemie der RWTH Aachen und Professor Dr. Thomas Carell vom Institut für Organische Chemie der Universität Marburg.
Kontakt

RWTH Aachen
Institut für Anorganische Chemie
Prof. Dr. Ulrich Simon
Telefon: 0241 - 80-94644
E-Mail: ulrich.simon@ac.rwth-aachen.de

2. gefördertes Projekt

Mit 721.300 Euro drei Jahre lang gefördert wird das aus drei Arbeitsgruppen bestehende Verbundvorhaben "Bio-induced chameleon effects in nano-composite self-assembled materials" am Physikalisch-Chemischen Institut der Universität Heidelberg (Dr. Michael Himmelhaus und Privatdozent Dr. Reiner Dahint), am Deutschen Krebsforschungszentrum Heidelberg (Privatdozent Dr. Ralf Bischoff) und am Fraunhofer-Institut für Produktionstechnik und Automatisierung, Stuttgart (Prof. Dr.-Ing. Engelbert Westkämper).

Ziel der Wissenschaftler ist es, Oberflächen durch das Einfügen biologischer Materie so zu verändern, dass sich neue optische Eigenschaften dieser Schichten ergeben. In Anlehnung an ein Vorbild aus dem Tierreich bezeichnen die Forscher das als "Chamäleon-Effekt". Es geht also darum, ein neues komplexes Material mit kombinierter biologischer und optischer Funktionalität zu entwickeln. Entsprechend sind zunächst geeignete Präparationstechniken zu etablieren. Mit deren Hilfe sollen die Nanopartikel in der benötigten Packungsdichte, Ordnung, Partikelgröße und Struktur hergestellt werden. Dabei wollen die Wissenschaftler sowohl die Selbstaggregationsprozesse kolloidaler Teilchensuspensionen für ihre Zwecke nutzen als auch eine speziell entwickelte Laserdrucktechnologie - man kennt Vergleichbares aus dem Copy Shop - einsetzen. In einem zweiten Schritt werden dann die biologischen Funktionen in die Oberflächenschichten integriert. Die Untersuchung, inwieweit sich die optischen Schichtparameter als Reaktion auf die spezifischen biologischen Bindungsereignisse ändern, schließt sich an.

Kontakt:

Universität Heidelberg
Physikalisch-Chemisches Institut
Dr. Michael Himmelhaus
Telefon: 06221 - 54-5065
E-Mail: michael.himmelhaus@urz.uni-heidelberg.de

3. gefördertes Projekt

Mit 481.600 Euro drei Jahre lang gefördert wird das aus zwei Arbeitsgruppen bestehende Verbundvorhaben "New prospects for electrooptical materials through dipole-induced selforganization of merocyanine dyes" von Professor Dr. Frank Würthner vom Institut für Organische Chemie der Universität Würzburg und von Professor Dr. Rüdiger Wortmann, Physikalische Chemie der Universität Kaiserslautern.

Dies Vorhaben ist ein Beispiel dafür, dass die Stiftung in der Förderinitiative "Komplexe Materialien" neben Projekten etwa zur Kopplung von belebter und unbelebter Materie auch die Beschäftigung mit Selbstorganisationsprozessen für deren gezielten Einsatz in der Materialsynthese fördert - wie etwa in diesem Fall die Entwicklung eines dipolinduzierten Selbstorganisationsprozesses von Polymeren, mit dem sich neue Perspektiven für das Design bestimmter elektrooptisch aktiver Materialien ergeben werden. Derartige Materialien besitzen ein breites Spektrum möglicher technologischer Anwendungen im Bereich der optischen Signalverarbeitung und der optischen Datenspeicherung.

Kontakt

Universität Würzburg
Institut für Organische Chemie
Prof. Dr. Frank Würthner
Telefon: 0931 - 888-5340
E-Mail: wuerthner@chemie.uni-wuerzburg.de

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de

Weitere Berichte zu: DNA Materie

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie