Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom leiten en miniature - mit einem Draht aus DNA?

24.07.2003


VolkswagenStiftung bewilligt knapp zwei Millionen Euro für drei neue Vorhaben in den Materialwissenschaften

... mehr zu:
»DNA »Materie

Materialien nehmen eine Schlüsselrolle bei der Entwicklung neuer Technologien ein. Von neuen Materialien erhofft man sich unter anderem Miniaturisierung, Gewichtsminderung, bessere Umwelt- und Bioverträglichkeit oder auch geringeren Rohstoff- und Energieverbrauch - und dies bei gleichzeitig optimierten strukturellen und funktionellen Eigenschaften. Mit ihrer Förderinitiative "Komplexe Materialien: Verbundprojekte der Natur-, Ingenieur- und Biowissenschaften" will die VolkswagenStiftung Wissenschaftler anregen, die traditionellen Grenzen der Werkstoffdisziplinen zu überschreiten und von Erkenntnissen und Erfahrungen anderer Gebiete einschließlich der Biowissenschaften zu profitieren. Für drei neue Vorhaben in ihrer Initiative zu den "Komplexen Materialien" stellt die Volkswagen-Stiftung jetzt knapp zwei Millionen Euro bereit. Die Verbundprojekte zeichnet unter anderem aus, dass sie größtenteils von Nachwuchswissenschaftlern getragen werden.

1. gefördertes Projekt


Mit 770.000 Euro drei Jahre lang gefördert wird das aus sechs Arbeitsgruppen bestehende Verbundvorhaben "DNA-based materials for the self-assembly of electrical circuits" an den Universitäten Aachen und Marburg, am Forschungszentrum Karlsruhe und am Technion - Israel Institute of Technology in Haifa.

Das Projekt ist beispielhaft für ein Vorhaben, bei dem es um die Kopplung von biologischer und unbelebter Materie geht. Ziel der Forscher ist der Umbau eines DNA-Moleküls zu einem elektrisch leitfähigen "Nanodraht". Und so wie einen dünnen Draht, der Strom leitet, kann man sich einen entsprechend modifizierten DNA-Strang in der Tat vorstellen. Zwei Wege wollen die Wissenschaftler verfolgen: Zum einen streben sie an, Metall-Nanopartikel in so engen Abständen an einen DNA-Strang zu binden, dass dieser elektrisch leitfähig wird - hier wird also von außen etwas an das Molekül angekoppelt. Der zweite Ansatz hingegen sieht vor, bestimmte Bausteine des DNA-Molekülgerüsts (und zwar bestimmte Basen) durch metallionenhaltige Basen zu ersetzen - es wird folglich die innere Struktur der DNA selbst verändert. In beiden Fällen erhält man einen elektrisch leitfähigen Draht in extrem kleinen Ausmaßen. Nimmt man konkrete Anwendungen in den Blick, so könnten solche "DNA-Nanodrähte" beispielsweise einmal als Leiterbahnen Schaltkreise in Miniaturformat ermöglichen. Hauptansprechpartner des Verbunds sind Professor Dr. Ulrich Simon vom Institut für Anorganische Chemie der RWTH Aachen und Professor Dr. Thomas Carell vom Institut für Organische Chemie der Universität Marburg.
Kontakt

RWTH Aachen
Institut für Anorganische Chemie
Prof. Dr. Ulrich Simon
Telefon: 0241 - 80-94644
E-Mail: ulrich.simon@ac.rwth-aachen.de

2. gefördertes Projekt

Mit 721.300 Euro drei Jahre lang gefördert wird das aus drei Arbeitsgruppen bestehende Verbundvorhaben "Bio-induced chameleon effects in nano-composite self-assembled materials" am Physikalisch-Chemischen Institut der Universität Heidelberg (Dr. Michael Himmelhaus und Privatdozent Dr. Reiner Dahint), am Deutschen Krebsforschungszentrum Heidelberg (Privatdozent Dr. Ralf Bischoff) und am Fraunhofer-Institut für Produktionstechnik und Automatisierung, Stuttgart (Prof. Dr.-Ing. Engelbert Westkämper).

Ziel der Wissenschaftler ist es, Oberflächen durch das Einfügen biologischer Materie so zu verändern, dass sich neue optische Eigenschaften dieser Schichten ergeben. In Anlehnung an ein Vorbild aus dem Tierreich bezeichnen die Forscher das als "Chamäleon-Effekt". Es geht also darum, ein neues komplexes Material mit kombinierter biologischer und optischer Funktionalität zu entwickeln. Entsprechend sind zunächst geeignete Präparationstechniken zu etablieren. Mit deren Hilfe sollen die Nanopartikel in der benötigten Packungsdichte, Ordnung, Partikelgröße und Struktur hergestellt werden. Dabei wollen die Wissenschaftler sowohl die Selbstaggregationsprozesse kolloidaler Teilchensuspensionen für ihre Zwecke nutzen als auch eine speziell entwickelte Laserdrucktechnologie - man kennt Vergleichbares aus dem Copy Shop - einsetzen. In einem zweiten Schritt werden dann die biologischen Funktionen in die Oberflächenschichten integriert. Die Untersuchung, inwieweit sich die optischen Schichtparameter als Reaktion auf die spezifischen biologischen Bindungsereignisse ändern, schließt sich an.

Kontakt:

Universität Heidelberg
Physikalisch-Chemisches Institut
Dr. Michael Himmelhaus
Telefon: 06221 - 54-5065
E-Mail: michael.himmelhaus@urz.uni-heidelberg.de

3. gefördertes Projekt

Mit 481.600 Euro drei Jahre lang gefördert wird das aus zwei Arbeitsgruppen bestehende Verbundvorhaben "New prospects for electrooptical materials through dipole-induced selforganization of merocyanine dyes" von Professor Dr. Frank Würthner vom Institut für Organische Chemie der Universität Würzburg und von Professor Dr. Rüdiger Wortmann, Physikalische Chemie der Universität Kaiserslautern.

Dies Vorhaben ist ein Beispiel dafür, dass die Stiftung in der Förderinitiative "Komplexe Materialien" neben Projekten etwa zur Kopplung von belebter und unbelebter Materie auch die Beschäftigung mit Selbstorganisationsprozessen für deren gezielten Einsatz in der Materialsynthese fördert - wie etwa in diesem Fall die Entwicklung eines dipolinduzierten Selbstorganisationsprozesses von Polymeren, mit dem sich neue Perspektiven für das Design bestimmter elektrooptisch aktiver Materialien ergeben werden. Derartige Materialien besitzen ein breites Spektrum möglicher technologischer Anwendungen im Bereich der optischen Signalverarbeitung und der optischen Datenspeicherung.

Kontakt

Universität Würzburg
Institut für Organische Chemie
Prof. Dr. Frank Würthner
Telefon: 0931 - 888-5340
E-Mail: wuerthner@chemie.uni-wuerzburg.de

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de

Weitere Berichte zu: DNA Materie

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Forschungspreis „Transformative Wissenschaft 2018“ ausgelobt
16.02.2018 | Wuppertal Institut für Klima, Umwelt, Energie gGmbH

nachricht Preis der DPG für superpräzisen 3-D-Laserdruck aus Karlsruhe
14.02.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics