Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was die lebendige Welt im Innersten zusammenhält

04.07.2003


Physiker des Max-Born-Instituts erhält Preis für die Untersuchung von Wasserstoffbrücken



Dr. Jens Stenger hat für seine Dissertation den Carl-Ramsauer-Preis der Physikalischen Gesellschaft zu Berlin erhalten. In seiner Doktorarbeit, die am Berliner Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) entstand, befasst sich Stenger mit so genannten Wasserstoffbrücken in Flüssigkeiten. Diese haben eine fundamentale Bedeutung für die Struktur und die Funktion von vielen molekularen Systemen.



Wasserstoffbrücken halten die Bausteine des Erbguts zusammen, sie bestimmen die Form und damit auch die Funktion von körpereigenen Proteinen, und sie machen Wasser erst zu dem was es ist, nämlich zu einer Flüssigkeit. "Ohne Wasserstoffbrücken wäre Wasser nur ein Gas", sagt Dr. Erik Nibbering. Nibbering leitet die Arbeitsgruppe am MBI, in der Stenger arbeitete. Derzeit forscht der Preisträger an der University of California in Berkeley (USA).

Trotz der grundlegenden Bedeutung der Wasserstoffbrücken ist ihre Physik noch nicht vollständig verstanden. Stengers Dissertation und seine wegweisenden Experimente haben jetzt, so das Urteil seines Betreuers Prof. Dr. Thomas Elsässer, "das Verständnis wasserstoffverbrückter Systeme wesentlich erweitert".

Um das Forschungsgebiet besser zu verstehen, hilft ein Gedankenexperiment. Die atomaren Bestandteile einer Flüssigkeit - bei Wasser also Wasserstoff und Sauerstoff - kann man sich als Menschen vorstellen, die sich an den Händen halten, etwa bei einer Kirchentagskundgebung in Berlin. Es herrscht ein großes Gedränge, Paare werden getrennt und finden sich wieder, andere reichen Fremden die Hände, verlieren sich wieder oder werden woandershin abgedrängt. Wie eng sich die Menschen umarmen und wie fest sie einander halten oder ob sie sich verlieren, hängt auch von der Umgebung ab, zum Beispiel von der Temperatur oder dem Abstand zu anderen.

Das ist bei Flüssigkeiten ähnlich. Schon bisher konnten Flüssigkeiten auch auf ihre molekulare Struktur hin untersucht werden. Das Problem war aber, dass die Molekülbewegungen zu schnell waren, um beobachtet zu werden. Stengers Experimente haben nun gezeigt, wie lange eine bestimmte Struktur in einer Flüssigkeit besteht und wie rasch sie sich ändert. "Es dauert ungefähr 15 Pikosekunden", erläutert Erik Nibbering, "dann hat sich die Struktur so verändert, dass kein Zusammenhang mehr mit dem Ausgangspunkt herzustellen ist."

Im Gedankenexperiment hätten sich die Menschen also in dieser Zeitspanne so durcheinanderbewegt, dass niemandem mehr ein ursprünglicher Standort oder ein Partner zuzuordnen wäre.

15 Pikosekunden sind "15 mal zehn hoch minus zwölf" Sekunden. Das ist sehr kurz. Zum Vergleich: Von der Erde bis zum Mond sind es rund 380.000 Kilometer. Dafür braucht ein Lichtstrahl wenig mehr als eine Sekunde. In 15 Pikosekunden ist der Lichtstrahl gerade mal 5 Millimeter weit gekommen.

Die Lichtblitze, mit denen Stenger die Eigenschaften der Wasserstoffbrücken untersuchte, sind sogar noch weitaus kürzer. Sie dauernd nur einige Femtosekunden, also den tausendstel Teil von Pikosekunden. Die Zeitauflösung der Experimente Stengers betrug 100 Femtosekunden. Er konnte also im Abstand von jeweils 100 millionstel Milliardstel Sekunden beobachten, wie sich die Brücken verhielten.

Wie kann man so etwas überhaupt untersuchen? Ein dünner Flüssigkeitsfilm wurde zwischen zwei Glasscheiben gepumpt. Die Flüssigkeit war nur rund dreihundert Mikrometer dick und durch diesen Film hindurch schoss Stenger Lichtulse aus einem Infrarotlaser. Diese Pulse dienten zugleich der Anregungung und dem Abtasten von Schwingungen. Die Menschenmenge wurde quasi dazu gebracht, eine La-Ola-Welle wie im Fußballstadion zu machen. Aus der Art der erzeugten Schwingungen konnte Stenger wichtige Schlussfolgerungen ziehen. So wies er erstmals einen Kopplungsmechanismus der Wasserstoffbrücken nach, der bisher in der Fachwelt umstritten war und nur theoretisch diskutiert wurde.

Mit einem weiteren Messverfahren untersuchte Jens Stenger die "Schwingungsdephasierung" in Wasserstoffbrücken. Auch dieses Experiment lässt sich mit einer Analogie erklären: Die Kirchtagsteilnehmer, die sich eben noch an den Händen hielten, verabreden sich nun zu einem besonderen Wettlauf im Kreis. Nach dem Startschuss rennen alle los, ein weiterer Schuss lässt alle umkehren und zum Ausgangspunkt zurückkehren. Jene, die am schnellsten waren, haben also den weitesten Weg zurück. Da sie aber auch auf dem Rückweg schneller sind als die Langsamen, kommen alle zugleich an. Wenn alle im Ziel sind, lösen sie ein Signal aus. Die Experimente am MBI haben nun gezeigt, dass dieses Signal - im Fachjargon heißt es Photonecho - in flüssigem Wasser mit der Zeit schwächer wird. Es kommen also immer weniger Läufer gemeinsam im Ziel an, manche sind noch unterwegs. Ihr Tempo hat also nachgelassen (oder andere sind noch schneller geworden). Die Schwingungen sind aus dem Gleichtakt geraten, sie sind dephasiert. Bei dieser Art von Messung kamen sowohl der "Startschuss" als auch das Signal zur Umkehr der "Läufer" von einem selbst konstruierten Infrarot-Laser. Wenn alle Moleküle am Ausgangspunkt wieder zusammenkommen, strahlen sie gemeinsam - also "in Phase" - in eine bestimmte Richtung ab. Das kann mit einem Detektor gemessen werden.

All diese Ergebnisse sind zunächst für die Grundlagenforschung von Bedeutung. Stengers Arbeit hat, so Elsässer, "starke internationale Beachtung gefunden und theoretische Arbeiten zur mikroskopischen Dynamik von Wasser stimuliert". Stenger habe erstmals kohärente Kernbewegungen und kohärente Polarisationen zeitlich erfasst. Thomas Elsässer hebt hervor: "Über die Physik hinaus besitzen diese Phänomene Bedeutung für zahlreiche chemische Elementarprozesse in Flüssigkeiten und Biomolekülen."

Dr. Jens Stenger wird den Ramsauer-Preis zusammen mit drei anderen Physikern aus Berlin und Potsdam am 10. Juli an der Freien Universität Berlin (Institut für Physik, Großer Hörsaal, Arnimallee 14; 17 Uhr) erhalten. Mit dieser Auszeichnung ehrt die Physikalische Gesellschaft Berlin seit 1988 herausragende Dissertationen.

Ansprechpartner: Dr. Jens Stenger (derzeit in den USA: jens@zepto.cchem.berkeley.edu)
Dr. Erik Nibbering, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030 / 6392-1477 (nibberin@mb-berlin.de)
Prof. Dr. Thomas Elsässer, MBI, 6392-1400

Das MBI betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Schwerpunkte des Forschungsprogramms sind die Realisierung neuer Quellen für ultrakurze und ultraintensive Lichtimpulse und deren Einsatz in Physik, chemischer Physik und Materialforschung. Das MBI ist in zahlreiche nationale und internationale Kooperationen eingebunden und wird von der Europäischen Union als Large Scale Laser Facility gefördert. Das Institut ist Teil des Forschungsverbundes Berlin e.V. und Mitglied der Leibniz-Gemeinschaft.

Der Forschungsverbund Berlin e.V. (FVB) ist Träger von acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die alle wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen.

Josef Zens | idw

Weitere Berichte zu: MBI Physik Pikosekunde Wasserstoffbrücke

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Mikrophotonik – Optische Technologien auf dem Weg in die Hochintegration
21.07.2017 | VDI Technologiezentrum GmbH

nachricht 1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext
20.07.2017 | Hochschule RheinMain

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie