Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was die lebendige Welt im Innersten zusammenhält

04.07.2003


Physiker des Max-Born-Instituts erhält Preis für die Untersuchung von Wasserstoffbrücken



Dr. Jens Stenger hat für seine Dissertation den Carl-Ramsauer-Preis der Physikalischen Gesellschaft zu Berlin erhalten. In seiner Doktorarbeit, die am Berliner Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) entstand, befasst sich Stenger mit so genannten Wasserstoffbrücken in Flüssigkeiten. Diese haben eine fundamentale Bedeutung für die Struktur und die Funktion von vielen molekularen Systemen.



Wasserstoffbrücken halten die Bausteine des Erbguts zusammen, sie bestimmen die Form und damit auch die Funktion von körpereigenen Proteinen, und sie machen Wasser erst zu dem was es ist, nämlich zu einer Flüssigkeit. "Ohne Wasserstoffbrücken wäre Wasser nur ein Gas", sagt Dr. Erik Nibbering. Nibbering leitet die Arbeitsgruppe am MBI, in der Stenger arbeitete. Derzeit forscht der Preisträger an der University of California in Berkeley (USA).

Trotz der grundlegenden Bedeutung der Wasserstoffbrücken ist ihre Physik noch nicht vollständig verstanden. Stengers Dissertation und seine wegweisenden Experimente haben jetzt, so das Urteil seines Betreuers Prof. Dr. Thomas Elsässer, "das Verständnis wasserstoffverbrückter Systeme wesentlich erweitert".

Um das Forschungsgebiet besser zu verstehen, hilft ein Gedankenexperiment. Die atomaren Bestandteile einer Flüssigkeit - bei Wasser also Wasserstoff und Sauerstoff - kann man sich als Menschen vorstellen, die sich an den Händen halten, etwa bei einer Kirchentagskundgebung in Berlin. Es herrscht ein großes Gedränge, Paare werden getrennt und finden sich wieder, andere reichen Fremden die Hände, verlieren sich wieder oder werden woandershin abgedrängt. Wie eng sich die Menschen umarmen und wie fest sie einander halten oder ob sie sich verlieren, hängt auch von der Umgebung ab, zum Beispiel von der Temperatur oder dem Abstand zu anderen.

Das ist bei Flüssigkeiten ähnlich. Schon bisher konnten Flüssigkeiten auch auf ihre molekulare Struktur hin untersucht werden. Das Problem war aber, dass die Molekülbewegungen zu schnell waren, um beobachtet zu werden. Stengers Experimente haben nun gezeigt, wie lange eine bestimmte Struktur in einer Flüssigkeit besteht und wie rasch sie sich ändert. "Es dauert ungefähr 15 Pikosekunden", erläutert Erik Nibbering, "dann hat sich die Struktur so verändert, dass kein Zusammenhang mehr mit dem Ausgangspunkt herzustellen ist."

Im Gedankenexperiment hätten sich die Menschen also in dieser Zeitspanne so durcheinanderbewegt, dass niemandem mehr ein ursprünglicher Standort oder ein Partner zuzuordnen wäre.

15 Pikosekunden sind "15 mal zehn hoch minus zwölf" Sekunden. Das ist sehr kurz. Zum Vergleich: Von der Erde bis zum Mond sind es rund 380.000 Kilometer. Dafür braucht ein Lichtstrahl wenig mehr als eine Sekunde. In 15 Pikosekunden ist der Lichtstrahl gerade mal 5 Millimeter weit gekommen.

Die Lichtblitze, mit denen Stenger die Eigenschaften der Wasserstoffbrücken untersuchte, sind sogar noch weitaus kürzer. Sie dauernd nur einige Femtosekunden, also den tausendstel Teil von Pikosekunden. Die Zeitauflösung der Experimente Stengers betrug 100 Femtosekunden. Er konnte also im Abstand von jeweils 100 millionstel Milliardstel Sekunden beobachten, wie sich die Brücken verhielten.

Wie kann man so etwas überhaupt untersuchen? Ein dünner Flüssigkeitsfilm wurde zwischen zwei Glasscheiben gepumpt. Die Flüssigkeit war nur rund dreihundert Mikrometer dick und durch diesen Film hindurch schoss Stenger Lichtulse aus einem Infrarotlaser. Diese Pulse dienten zugleich der Anregungung und dem Abtasten von Schwingungen. Die Menschenmenge wurde quasi dazu gebracht, eine La-Ola-Welle wie im Fußballstadion zu machen. Aus der Art der erzeugten Schwingungen konnte Stenger wichtige Schlussfolgerungen ziehen. So wies er erstmals einen Kopplungsmechanismus der Wasserstoffbrücken nach, der bisher in der Fachwelt umstritten war und nur theoretisch diskutiert wurde.

Mit einem weiteren Messverfahren untersuchte Jens Stenger die "Schwingungsdephasierung" in Wasserstoffbrücken. Auch dieses Experiment lässt sich mit einer Analogie erklären: Die Kirchtagsteilnehmer, die sich eben noch an den Händen hielten, verabreden sich nun zu einem besonderen Wettlauf im Kreis. Nach dem Startschuss rennen alle los, ein weiterer Schuss lässt alle umkehren und zum Ausgangspunkt zurückkehren. Jene, die am schnellsten waren, haben also den weitesten Weg zurück. Da sie aber auch auf dem Rückweg schneller sind als die Langsamen, kommen alle zugleich an. Wenn alle im Ziel sind, lösen sie ein Signal aus. Die Experimente am MBI haben nun gezeigt, dass dieses Signal - im Fachjargon heißt es Photonecho - in flüssigem Wasser mit der Zeit schwächer wird. Es kommen also immer weniger Läufer gemeinsam im Ziel an, manche sind noch unterwegs. Ihr Tempo hat also nachgelassen (oder andere sind noch schneller geworden). Die Schwingungen sind aus dem Gleichtakt geraten, sie sind dephasiert. Bei dieser Art von Messung kamen sowohl der "Startschuss" als auch das Signal zur Umkehr der "Läufer" von einem selbst konstruierten Infrarot-Laser. Wenn alle Moleküle am Ausgangspunkt wieder zusammenkommen, strahlen sie gemeinsam - also "in Phase" - in eine bestimmte Richtung ab. Das kann mit einem Detektor gemessen werden.

All diese Ergebnisse sind zunächst für die Grundlagenforschung von Bedeutung. Stengers Arbeit hat, so Elsässer, "starke internationale Beachtung gefunden und theoretische Arbeiten zur mikroskopischen Dynamik von Wasser stimuliert". Stenger habe erstmals kohärente Kernbewegungen und kohärente Polarisationen zeitlich erfasst. Thomas Elsässer hebt hervor: "Über die Physik hinaus besitzen diese Phänomene Bedeutung für zahlreiche chemische Elementarprozesse in Flüssigkeiten und Biomolekülen."

Dr. Jens Stenger wird den Ramsauer-Preis zusammen mit drei anderen Physikern aus Berlin und Potsdam am 10. Juli an der Freien Universität Berlin (Institut für Physik, Großer Hörsaal, Arnimallee 14; 17 Uhr) erhalten. Mit dieser Auszeichnung ehrt die Physikalische Gesellschaft Berlin seit 1988 herausragende Dissertationen.

Ansprechpartner: Dr. Jens Stenger (derzeit in den USA: jens@zepto.cchem.berkeley.edu)
Dr. Erik Nibbering, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Tel.: 030 / 6392-1477 (nibberin@mb-berlin.de)
Prof. Dr. Thomas Elsässer, MBI, 6392-1400

Das MBI betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Schwerpunkte des Forschungsprogramms sind die Realisierung neuer Quellen für ultrakurze und ultraintensive Lichtimpulse und deren Einsatz in Physik, chemischer Physik und Materialforschung. Das MBI ist in zahlreiche nationale und internationale Kooperationen eingebunden und wird von der Europäischen Union als Large Scale Laser Facility gefördert. Das Institut ist Teil des Forschungsverbundes Berlin e.V. und Mitglied der Leibniz-Gemeinschaft.

Der Forschungsverbund Berlin e.V. (FVB) ist Träger von acht natur-, lebens- und umweltwissenschaftlichen Forschungsinstituten in Berlin, die alle wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen.

Josef Zens | idw

Weitere Berichte zu: MBI Physik Pikosekunde Wasserstoffbrücke

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Kieler Forscher koordiniert millionenschweres Verbundprojekt in der Entzündungsforschung
19.01.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Red Dot Design Award für die dormakaba 360°City App
09.12.2016 | Kaba GmbH

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie