Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grand Prix für Neuroimmunologie

17.10.2002


Hochdotierter Wissenschaftspreis des Institut de France geht 2002 an Prof. Hartmut Wekerle für seine Arbeiten zu Verlauf und Therapie von Autoimmunkrankheiten



Prof. Hartmut Wekerle, Direktor am Max-Planck-Institut für Neurobiologie in Martinsried bei München, erhält den mit 750.000 Euro dotierten Wissenschaftspreis der Fondation "Louis D." des Institut de France, Paris, für seine Arbeiten zur Aufklärung der grundlegenden Mechanismen von Autoimmunkrankheiten des Nervensystems. Der seit dem Jahr 2000 von der "Louis D."-Stiftung verliehene "Grand Prix für Wissenschaft" ist die bedeutendste französische Auszeichnung für ausländische Forscher. Die Preisverleihung findet am 17. Oktober 2002 am Institut de France in Paris statt.



Aufgabe des Nervensystems ist es, Reize aufzunehmen, sie zu verarbeiten und die Funktionen einzelner Organe zu koordinieren und sinnvoll zu steuern. Das Immunsystem hingegen wirkt als das Schutz- und Abwehrsystem des Körpers. Beide Organsysteme üben ihre Funktion nicht etwa beziehungslos nebeneinander aus, sondern stimmen sich sorgfältig aufeinander ab: Zwischen Nerven- und Immunsystem bestehen vielfältige und hoch komplexe Wechselbeziehungen. Eine Störung dieses Zusammenspiels führt zu ernsthaften Erkrankungen.

Im gesunden Organismus reagiert das Immunsystem auf fremde Zellen, indem es Antikörper und Cytokine bildet, Proteine, die Oberflächenstrukturen - Antigene - auf den fremden Zellen (z. B. Viren oder Bakterien) erkennen. Zusätzlich verfügt das Immunsystem über verschiedene Arten von Immunzellen, die mit ihren Oberflächenrezeptoren körperfremde Zellen erkennen und zerstören. Eine Gruppe der Immunzellen bilden die T-Lymphozyten, auch T-Zellen genannt. In Ausnahmesituationen - bei so genannten Autoimmunkrankheiten - wenden sich autoaggressive T-Zellen des Immunsystems gegen körpereigene Antigene und zerstören körpereigene Zellen. Multiple Sklerose gilt als eine derartige Autoimmunerkrankung.

Lange Zeit hatte man angenommen, dass in gesunden Organismen keine autoreaktiven T-Zellen vorkommen. Professor Wekerle hat dieses Dogma widerlegt. Seine Forschungen zeigen, dass auch in gesunden Organismen zahlreiche autoaggressive T-Zellen gewissermaßen "im Ruhezustand" vorhanden sind. Diese Zellen ruhen im Lymphgewebe und können sich in der Blutbahn bewegen, ohne Schaden anzurichten. Werden sie aktiviert, etwa bei Entzündungen oder Virusinfektionen, können sie Autoimmunreaktionen auslösen. Hartmut Wekerle konnte außerdem zeigen, dass aktivierte autoaggressive T-Zellen nicht nur den Organismus schädigen, sondern auch die Regeneration von geschädigtem Gewebe unterstützen können, etwa bei zerstörten Muskel- oder Nervengeweben.

Die Wissenschaftler im Labor von Hartmut Wekerle waren auch die ersten, die die verschiedenen Wege der T-Lymphozyten im Organismus genau verfolgen konnten - weil es ihnen gelungen war, ein grün fluoreszierendes Protein durch Genmanipulation in die Abwehrzellen einzuschleusen. Mit den so markierten und weiterhin intakten T-Lymphozyten konnten die Martinsrieder Wissenschaftler auch die Wechselwirkungen zwischen Nervensystem und Immunsystem unter die Lupe nehmen und die komplizierte Beteiligung von T-Zellen an Immunreaktionen gegen das zentrale Nervensystem untersuchen.

Die Funktion der hirnspezifischen T-Lymphozyten zu verstehen ist deswegen so kompliziert, weil das Nervengewebe durch eine spezialisierte Zellschicht vom Blutkreislauf abgeschottet ist - diese Endothelschicht bildet die für die meisten Blutzellen und Blutmoleküle undurchdringliche "Blut-Hirn-Schranke". Bis vor wenigen Jahren hatte man angenommen, dass keinerlei Zellen oder Stoffe aus dem Blut in das zentrale Nervensystem eindringen können. Deshalb vermutete man auch, eine Immunreaktion müsste im zentralen Nervensystem anders ablaufen als im übrigen Organismus. Professor Wekerle und seinen Mitarbeitern gelang jedoch der Nachweis, dass eine kleine Anzahl frisch aktivierter T-Lymphozyten durchaus diese Barriere überwinden können.

Wekerles Gruppe zeigte außerdem, dass aktivierte Lymphozyten in der Lage sind, Krankheiten wie die Autoimmun-Enzephalomyelitis (EAE) im zentralen Nervensystem auszulösen. Doch normalerweise haben T-Zellen im Hirn keine Überlebenschance, da im Gehirngewebe so genannte MHC-Proteine, die dem Immunsystem zwischen fremd und körpereigen unterscheiden helfen, nicht gebildet werden. Gemeinsam mit Kollegen hat Hartmut Wekerle bei ganz unterschiedlichen pathogenen Veränderungen im Gehirn die Neubildung von MHC-Proteinen für Antigene sowie von Cytokinen beobachtet. Diese fanden sich oft in reichem Maße bei Entzündungsreaktionen, Virusinfektionen, Tumoren und - besonders überraschend - bei neuronalen Degenerationsprozessen, wie Morbus Alzheimer, Morbus Parkinson oder Amyotropher Lateralsklerose. Wekerle gelang somit der Nachweis, dass in den derart veränderten Arealen des zentralen Nervensystems tatsächlich die Voraussetzungen für die Reaktivität der T-Lymphozyten erfüllt sind.

Die Wissenschaftler konnten zudem zeigen, dass die Immunreaktivität im Nervensystem je nach Bedarf ein- oder ausgeschaltet werden kann. In Experimenten an Gewebekulturen entdeckten sie, dass die Aktivität der Nervenzellen über die Expression oder Unterdrückung immunologisch wichtiger Gene entscheidet: So unterdrücken elektrisch aktive Nervenzellen die Bildung von MHC-Proteinen, hingegen werden bei durch Nervengift gelähmten Neuronen diese für die Immunreaktion wichtigen Antigene wieder gebildet. Signalgeber für das Ein- und Abschalten der Immungene sind offenbar Neurotrophine, Botenstoffe, die die Funktion der Nervenzellen steuern. Sie werden hauptsächlich von aktiven Nervenzellen gebildet. Ihre immunsuppressive Wirkung, also die Unterdrückung von Immunreaktionen, konnte Wekerle bereits im Tierexperiment nachweisen. Inwieweit Neurotrophine zur Therapie von autoimmunen Erkrankungen des Nervensystems eingesetzt werden können, will Wekerle nun mit seinen Kollegen. untersuchen.

Grundlage für die bahnbrechenden Forschungsergebnisse aus der von Hartmut Wekerle geleiteten Abteilung Neuroimmunologie über die Immunreaktivität im Nervensystem ist einerseits die neuartige Kombination immunologischer, neuro- und molekularbiologischer Methoden (z. B. bei der Klonierung und gentechnologischen Markierung autoimmuner T-Lymphozyten) sowie andererseits die Anwendung neuer elektrophysiologische Technologien wie das Patch-Clamp-Verfahren. Die Wissenschaftler stellen sich nun der Aufgabe, die neu gewonnenen Erkenntnisse für klinische Anwendungen nutzbar zu machen. Dies gilt nach Wekerle besonders für die Nutzung gentechnologischer Strategien zur Entwicklung von Therapien bei entzündlichen und degenerativen Erkrankungen des Nervensystems. Die Forschungsgruppe um Hartmut Wekerle arbeitet deshalb sehr eng und erfolgreich mit dem von Prof. Reinhard Hohlfeld geleiteten Institut für Klinische Neuroimmunologie an der Universität München zusammen. Gemeinsam erforschen die Wissenschaftler der beiden Forschungseinrichtungen auch erfolgreich die Hintergründe für die Entstehung von Multipler Sklerose (MS).

Zur Person:

Prof. Hartmut Wekerle, 1944 in Waldshut geboren, studierte Medizin an der Universität Freiburg, wurde dort 1971 zum Dr. med. promoviert und arbeitete anschließend von 1970 bis1973 als "postdoctoral fellow" am Department of Cell Biology des Weizman Institute of Science in Rehovot, Israel. Zwischen 1973 und 1982 war er Wissenschaftlicher Mitarbeiter am Max-Planck-Institut für Immunbiologie in Freiburg. In dieser Zeit habilitierte er sich im Fach Medizin an der Universität Freiburg (1977), die ihn 1980 zum Professor für Immunologie ernannte. Von 1982 bis 1989 leitete Wekerle die Klinische Forschungsgruppe "Multiple Sklerose" der Max-Planck-Gesellschaft in Würzburg und war von 1999 bis 2002 Vorsitzender der Biologisch-Medizinischen Sektion der Max-Planck-Gesellschaft. Seit 1988 ist er Wissenschaftliches Mitglied und Direktor am Max-Planck-Institut für Neurobiologie in Martinsried bei München.

Wekerle erhielt viele wissenschaftliche Auszeichnungen, darunter den Jung-Preis für Wissenschaft und Forschung (1982), den Duchenne-Preis (1984), die Kroc Visiting Professorships in Chicago, London/Ontario, Los Angeles und San Diego (1990), die Charcot Lecture in Venice (1998) sowie den K.J.-Zülch-Preis (1999) und den Charcot Award der "International Federation of MS Societies" (2001). Seit 1993 ist Wekerle Honorarprofessor an der Ludwig-Maximilians-Universität München.

Weitere Informationen erhalten Sie von:

Eva-Maria Diehl
Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18a
82152 Martinsried bei München
Tel.: +49 (89) 85 78 - 28 24
Fax: +49 (89) 85 78 - 29 43
E-Mail: diehl@neuro.mpg.de

| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri02/pri0295.htm

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

nachricht Krankheitserreger beim Reis blockieren
10.08.2017 | Heinrich-Heine-Universität Düsseldorf

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie