Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochauflösende Optische Mikroskopie: ICO-Preis 2000 für Stefan Hell

18.01.2001


Dr. Stefan Hell, Privatdozent und Leiter der Selbständigen Nachwuchsgruppe Hochauflösende Optische Mikroskopie am Max-Planck-Institut für biophysikalische Chemie in Göttingen, wurde in Anerkennung seiner "innovativen Arbeit zur Erhöhung der Auflösung in der Fernfeldmikroskopie" mit dem Preis der Internationalen Kommission für Optik für das Jahr 2000 ausgezeichnet. Die International Commission for Optics (ICO) ist der internationale Dachverband von 44 nationalen Gesellschaften für Optik, wie z. B. der "Optical Society of America". Der ICO-Preis wird jährlich an Personen verliehen, die vor ihrem 40. Lebensjahr "in der Optik ein neues Gebiet erschlossen oder maßgeblich erweitert haben". Der international vergebene Preis wurde in den letzten zehn Jahren viermal in die USA und zuletzt 1992 an einen Wissenschaftler aus Deutschland vergeben.

Dr. Stefan Hell (Foto: P.Goldmann)

Die Titelseite des "Jahrbuch 1999" der Max-Planck-Gesellschaft zeigte die von Hell und Mitarbeitern erreichte Auflösungsverbesserung beim 4Pi-konfokalen Mikroskop (rechts gegenüber links).

In der Laudatio, die jetzt im ICO Newsletter 46 (Januar 2001) erschienen ist, werden die Verfahren, die Hell entwickelt hat, ausführlich beschrieben und die Verbesserungen genannt, die sich aus ihrer Anwendung ergeben. Hells Ziel ist es, die von Abbe formulierte Beugungssgrenze der Lichtmikroskopie zu überwinden und das Auflösungsvermögen auf weniger als Hundert Nanometer (der Millionste Teil eines Millimeters) zu drücken. Das ist besonders für die biologisch-medizinische Forschung von großem Interesse, da man mit dem Lichtmikroskop, anders als z.B. dem Elektronen- oder dem Kraftmikroskop, auch lebende Zellen betrachten kann, und zwar in unterschiedlicher räumlicher Tiefe. Dreidimensionale lichtmikroskopische Untersuchungsmethoden, wie z.B. die konfokale und die Multiphoton-Fluoreszenz Mikroskopie spielen daher eine Schlüsselrolle bei der Erforschung der Geheimnisse des Lebens auf sub-zellulärer Ebene. Eine Verbesserung des Auflösungsvermögens ist hier von grundsätzlicher Bedeutung.

Hells Vorgehen ist nicht nur wissenschaftlich originell, sondern wurde auch praktisch bedeutsam. In seinen Arbeiten musste er theoretische Konzepte entwickeln, sie experimentell überprüfen und schließlich auch umsetzen. Er war nach vielen Jahrzehnten vermutlich der erste, der das Auflösungsproblem der Fluoreszenz-Lichtmikroskopie systematisch neu überdacht hat. Im Jahr 1990 entwickelte er die Idee der 4Pi-konfokalen Mikroskopie, mit der die axiale Auflösung der konfokalen Mikroskopie 3-7fach verbessert werden konnte. Um diese Idee zu untersuchen, ging er an das European Molecular Biology Laboratory (EMBL) in Heidelberg, wo er die Wirksamkeit von Teilprinzipien dieser Idee nachweisen konnte. Mit der 4Pi-konfokalen Mikroskopie konnten Hell und Mitarbeiter dreidimensionale Zellstrukturen 4-mal deutlicher abbilden als das mit "high-end" konfokaler Mikroskopie möglich war. Mit der Anwendung zusätzlicher Bildbearbeitungstechniken erreichten sie sogar, zum allerersten Mal, eine dreidimensionale Auflösung in der Größenordnung von 100 nm, also deutlich unterhalb der Wellenlänge des Lichtes (400-700 nm).

Stefan Hell ist 1962 geboren. Er studierte Physik an der Universität Heidelberg, wo er 1987 sein Diplom erhielt und 1990 auch promovierte. Schon während seiner Doktorarbeit bei Professor Hunklinger erkannte er, dass die räumlich dichte, punktförmige Übertragungsfunktion von konfokalen Scanner-Mikroskopen ein guter Ansatzpunkt sind, die Auflösungsgrenzen der Fluoreszenzmikrokopie zu verbessern. Nach ersten Schritten in diese Richtung am EMBL ging er 1993 an die Universität Turku (Finnland), wo er in der Abteilung für Medizinische Physik eine Forschungsgruppe aufbaute, die diese Frage weiter untersuchte. Während dieser Zeit entwickelte er das Konzept der "Stimulated-Emission-Depletion (STED)" Mikroskopie, bei der die Ausdehnung des abtastenden fluoreszierenden Lichtpunktes durch "Abschalten" der Fluoreszenz an seinem Rand verkleinert wird. Hell sagte theoretisch voraus, dass diese Technik die Auflösung der Fluoreszenzmikroskopie etwa 5-fach verbessern werde, und demonstrierte das mit seinen Mitarbeitern dann auch einige Jahre später. Nach einem Halbjahresaufenthalt in Oxford und seiner Habilitation in Physik an der Universität Heidelberg (wo er immer noch lehrt) kehrte Hell 1997 aus Finnland nach Deutschland zurück, wo er am Max-Planck-Institut für biophysikalische Chemie in Göttingen eine unabhängige Arbeitsgruppe aufbaute.

Der (englische) Wortlaut der Laudatio ist im Internet zugänglich
( http://www.ico-optics.org/ico_jan01.html).

... mehr zu:
»ICO-Preis »Mikroskopie »Physik

Auch die Bilder stehen dort in höherer Auflösung zur Verfügung 
( http://www.mpibpc.gwdg.de/PR/01_01/hell.html).

Für Rückfragen:
Priv.-Doz. Dr. Stefan Hell, Max-Planck-Institut für biophysikalische Chemie, AG Hochauflösende Optische Mikroskopie, 37070 Göttingen; Tel.: 0551 201 1360; Fax: 0551 201 1085; E-Mail: shell@gwdg.de

Weitere Informationen finden Sie im WWW:


Dr. Christoph R. Nothdurft |

Weitere Berichte zu: ICO-Preis Mikroskopie Physik

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht ERC-Grants: Fünf neue Projekte an der LMU
11.08.2017 | Ludwig-Maximilians-Universität München

nachricht Krankheitserreger beim Reis blockieren
10.08.2017 | Heinrich-Heine-Universität Düsseldorf

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz