Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was kommt nach der Quantentheorie?

13.08.2008
Caslav Brukner erhält Grant für zukunftsorientierte theoretische Forschung

Das 2005 gegründete Foundational Questions Institute (FQXi) fördert weltweit Forschungsprojekte zu fundamentalen Fragen der Physik und Kosmologie. Caslav Brukner wurde nun als einzigem Forscher einer österreichischen Universität mit 29 anderen internationalen Wissenschaftern der Large Grant 2008 verliehen.

Brukner erhielt fast 70.000 US-Dollar für seine Arbeiten im Bereich der Quantenmechanik. Das FQXi unterstützt Projekte, die die Basis der gängigen Forschung verlassen und neue Theorien entwickeln.

Fundamentaler Forschungsfortschritt bedeutet Paradigmenwechsel

"Von allen bisher bekannten physikalischen Theorien ist die Quantenmechanik jene, die die genaueste Beschreibung der Phänomene in der Natur liefert. Sie ermöglichte erstmals ein exaktes Verständnis chemischer Vorgänge und führte zu Erfindungen wie Transistor oder Laser. Die Quantenphysik griff zudem unser intuitives klassisches Weltbild an, indem sie althergebrachte Konzepte wie Lokalität und Kausalität in Frage gestellt hat", führt Caslav Brukner von der Gruppe Quantenoptik, Quantennanophysik und Quanteninformation der Fakultät für Physik der Universität Wien zum Thema aus.

Vor dem Hintergrund dieser unglaublichen Erfolgsgeschichte stellt sich der Grant-Gewinner die Frage, ob man Quantenmechanik als eine letzte und endgültige Theorie auffassen kann. Denn er ist überzeugt, dass eine wissenschaftliche Theorie, auch wenn sie zum jetzigen Zeitpunkt als gültig anerkannt ist, letztlich von einer anderen Theorie erweitert wird, in welcher die alte Theorie lediglich ein Spezialfall ist. Beispielhaft erklärt dies Brukner mit der Vorstellung der Erde als Scheibe, die auf kleinen geographischen Gebieten durchaus relativ genau und zulässig war. Die zunehmende Erforschung unseres Planeten erzwang jedoch, die Vorstellung der Erde als Kugel einzuführen.

"Die Geschichte lehrt uns weiters, dass Paradigmenwechsel im wissenschaftlichen Weltbild notwendigerweise stets von der Aufgabe alter Begriffe und der Einführung neuer Konzepte begleitet werden. Auf den alten Konzepten zu insistieren, bedingt gewöhnlich immer komplexere Modelle, um den neuen und genaueren experimentellen Tatsachen noch gerecht werden zu können", meint Brukner und nennt als Beispiel die Epizyklentheorie im Ptolemäischen Weltbild.

Verallgemeinerung der Quantentheorie?

Die zurzeit existierenden Alternativen zur Quantentheorie versuchen ausnahmslos, das eine oder andere alte "klassische" Konzept zu retten. Caslav Brukner versucht hingegen, neue Theorien zu entwickeln, die die gleichen fundamentalen - nicht-klassischen - Prinzipien haben wie die Quantenmechanik und die die Quantenmechanik als Spezialfall enthalten. Brukner versucht auch, Möglichkeiten zu finden, diese neuen Alternativtheorien im Labor zu testen.

All diese Alternativen - so wie die Quantenphysik selbst - basieren auf dem Prinzip, dass elementare physikalische Systeme beschränkten Informationsinhalt haben. Sie erlauben beispielsweise weiterhin, dass ein Objekt gleichzeitig in einer Überlagerung (Superposition) verschiedener Zustände sein kann, oder die Tatsache, dass zwei Objekte auf eine Art miteinander verschränkt sein können, wie es klassisch nicht erklärbar ist. Der entscheidende Unterschied zur Quantenmechanik ist aber, dass sich die Alternativtheorien in der Dimensionalität jenes abstrakten Raumes unterscheiden können, der zu ihrer mathematischen Beschreibung notwendig ist.

Caslav Brukner meint, dass diese alternativen Theorien entweder in Bereichen der Natur realisiert sein könnten, die bisher experimentell noch nicht erschlossen worden sind, oder andernfalls jenes zusätzliche Prinzip herausgefunden werden kann, das aus all den Alternativen die gewöhnliche Quantenmechanik als einzige Möglichkeit auszeichnet. Der Quantenphysiker wird mit fast 70.000 US-Dollar vom FQXi gemeinsam mit Tomasz Paterek von der ÖAW versuchen, Antworten auf diese Fragen zu finden.

Foundational Questions Institute (FQXi)

Das FQXi, basierend auf der John Templeton Foundation, ist in Cambridge, USA, angesiedelt und wird von Max Tegmark, Professor für Physik am Massachusetts Institute of Technology (MIT), geleitet. Ziel des FQXi ist es, ein weltweites Netzwerk zur Erforschung von Ursprung und Entwicklung des Universums aufzubauen. Gefördert werden Projekte aus dem Bereich der Physik und Kosmologie, bei denen versucht wird, mit innovativen Theorien wissenschaftliches Neuland auszuloten. Heuer wurden für die Large Grant-Gewinner insgesamt über 2,5 Millionen US-Dollar ausgeschüttet. Markus Aspelmeyer, der heute an der ÖAW forscht, erhielt bereits 2006 und auch heuer wieder einen Large Grant.

Kontakt
Ao. Univ.-Prof. Mag. Dr. Caslav Brukner
Gruppe Quantenoptik, Quantennanophysik und Quanteninformation
Fakultät für Physik
Universität Wien
T +43-1-4277-295 73
caslav.brukner@univie.ac.at
Rückfragehinweis:
Mag. Veronika Schallhart
Öffentlichkeitsarbeit Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30, M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie