Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Robotern das menschliche Laufen beibringen

29.07.2008
Universität Jena hat das weltweit erste Ganglabor für Roboter eingerichtet

Ein leises Surren setzt ein, als sich die stabartigen Beine in die richtige Position bewegen. "Justieren" nennt das der Jenaer Bewegungswissenschaftler Moritz Maus und berührt noch kurz die runden Gummifüße, um die Reaktion des Roboters zu testen, bevor dieser losläuft.

Dabei sieht der PogoWalker überhaupt nicht wie ein typischer Maschinenmensch aus: Zwei gelenkfreie Metallstäbe mit je einer Kugel am Ende und ein kastenähnlicher Überbau - das ist auf den ersten Blick alles. Beim näheren Hinsehen fallen einige Federn aus Metall auf sowie eine Menge dünner, schwarz-roter Kabel. Gebündelt ragen sie aus dem Metallgestell, dem ausgedehnten Oberkörper des Roboters, heraus. Sie enden verzweigt in verschiedenen Apparaturen an der Wand des Raumes.

Dieser wurde gerade erst eingerichtet und ist damit die neueste Errungenschaft des Lauflabors am Institut für Sportwissenschaft der Friedrich-Schiller-Universität Jena. "Wir haben hier das weltweit erste Ganglabor für Roboter eingerichtet", sagt Arbeitsgruppenleiter Dr. Andre Seyfarth. In dem neuen Labor, dessen Ausstattung mit etwa 70.000 Euro von der Deutschen Forschungsgemeinschaft (DFG) gefördert wurde, wollen die Wissenschaftler ihre am Computer entwickelten Bewegungsmodelle mechanisch umsetzen. Die Daten dafür stammen von Messungen aus dem Lauflabor. Dort bewegen sich auf einem großen Laufband menschliche oder tierische Probanden, während die Wissenschaftler mit unzähligen Sensoren jede einzelne Bewegung messen.

"Unser Ziel ist es, die menschliche Fortbewegung bis ins kleinste Detail zu verstehen", macht Dr. Seyfarth deutlich. Aus ihren Messdaten und Beobachtungen haben die Jenaer Wissenschaftler Modelle erarbeitet und testen mit Hilfe der Roboter ihre Funktionalität. Die Voraussetzung dafür wurde jetzt mit dem neuen Robotiklabor geschaffen, wo den Wissenschaftlern ein eigens für die Roboterforschung hergestelltes Laufband zu Verfügung steht.

Doktorand Moritz Maus untersucht in dem neuen Labor jetzt ein Problem, das bei realen Robotern bisher große Schwierigkeiten bereitet: die Stabilität bei hohen Geschwindigkeiten. Hierfür hat er eine Strategie entwickelt, die den Oberkörper stabilisiert, indem die Bodenreaktionskraft stets auf einen bestimmten, virtuellen Drehpunkt im Oberkörper gerichtet ist. "Wir konnten bereits zeigen, dass das Drehmoment, welches dazu in der Hüfte aufgebracht werden muss, beim Gehen sehr gut mit dem tatsächlich beim Menschen beobachteten Hüftdrehmoment übereinstimmt", erzählt Moritz Maus.

Mit dem PogoWalker testet der Jenaer Physiker die Funktionalität seiner Theorie. Noch wird der aus zwei gefederten Stabbeinen und einem ausgedehnten Oberkörper bestehende Roboter auf dem Laufband von zwei Glasplatten flankiert. Dadurch werden seitliche Bewegungen verhindert, so dass der PogoWalker gewissermaßen zweidimensional läuft. Irgendwann wollen die Jenaer Wissenschaftler die Glasscheiben entfernen und die Stabilisierung auch in drei Dimensionen testen. "Statt großen Füßen hat der PogoWalker nur einen punktförmigen Bodenkontakt", erläutert Maus. "Trotzdem hält er in dem von uns entwickelten Modell seine Stabilität auch bei Geschwindigkeiten über 25 km/h."

"Wenn wir zeigen können, dass elastische Strukturen zusammen mit unserer Theorie der Oberkörperstabilisierung zu solidem Laufverhalten führen, wäre das ein bahnbrechendes Ergebnis", ist Arbeitsgruppenleiter Andre Seyfarth überzeugt. Seine Forschungsgruppe beschäftigt sich darüber hinaus mit dem Hüpfen als Teil der Bewegung, dem Einfluss der verschiedenen Beinmuskeln und dem Aufspüren der neuronalen Aspekte beim Laufen. "Wir betreiben hier Grundlagenforschung, denn nur wenn wir die biologischen Grundlagen eindeutig verstehen, können wir sie in effektive technische Systeme übernehmen", ist Seyfarth überzeugt. "Irgendwann", so hofft er, "werden unsere Erkenntnisse auch dabei helfen, die perfekten Beinprothesen zu bauen."

Kontakt:
Dr. Andre Seyfarth
Institut für Sportwissenschaft / Lauflabor
Dornburger Str. 23, 07743 Jena
Tel.: 03641 / 945730
E-Mail: Andre.Seyfarth[at]uni-jena.de

Manuela Heberer | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen
06.12.2016 | Technische Universität Clausthal

nachricht Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen
05.12.2016 | Fraunhofer-Institut für Holzforschung - Wilhelm-Klauditz-Institut WKI

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie