Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuronale Netzwerke mit Verstärker

10.07.2008
Dr. Raoul-Martin Memmesheimer vom Max-Planck-Institut für Dynamik und Selbstorganisation erhält die Otto-Hahn-Medaille.
Alle Vorgänge im Gehirn sind darauf angewiesen, dass die Nervenzellen Signale hinreichend verlässlich verarbeiten und weiterleiten. Das gilt auch für die Hirnregionen, in denen die Neuronen weniger eng mit einander vernetzt sind.

Dr. Raoul-Martin Memmesheimer vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen hat nun erstmals eine Theorie entwickelt, die diese Fähigkeit erklärt. Seine Modelle berücksichtigen, dass Neuronen mit einer Art Signalverstärker ausgerüstet sind. Für seine Forschungsergebnisse hat die Max-Planck-Gesellschaft Dr. Raoul-Martin Memmesheimer jetzt mit der Otto-Hahn-Medaille ausgezeichnet.

Die Neuronen im Gehirn kommunizieren mit Hilfe elektrischer Impulse, die sie entlang ihrer Fortsätze an ihre Nachbarn weiterleiten. Diese können dann ihrerseits einen elektrischen Impuls abfeuern, so dass sich ein Signal durch das gesamte neuronale Netzwerk fortpflanzen kann. Allerdings gibt es eine Hürde: Nur wenn die Wirkung empfangener Impulse eine gewisse Schwelle überschreitet, sendet das Neuron auch tatsächlich selbst einen solchen Impuls. Auf diese Weise setzen sich besonders solche Signale durch, bei denen ein Neuron Impulse von mehreren seiner Nachbar-Gehirnzellen gleichzeitig empfängt.

Trotz dieses gemeinsamen Prinzips ist das neuronale Netzwerk nicht überall gleich aufgebaut: In manchen Regionen sind die Neuronen dichter miteinander verwoben als in anderen. Besonders die Übertragung starker Signale in schwach vernetzten Regionen des Gehirns wie etwa in Teilen des Hippocampus war Wissenschaftlern bisher ein Rätsel. Denn die Forscher gingen davon aus, dass nur sehr dicht verwobene Netzwerke Signale mit ausreichender Verlässlichkeit übermitteln können. Nach dem Prinzip "doppelt hält besser" sind in solchen Systemen sehr viele Neuronen mit denselben Nachbarn verknüpft. Fällt ein Neuron aus, treten andere deshalb mühelos an seine Stelle und leiten das Signal dennoch weiter.

... mehr zu:
»Impuls »Neuron

Memmesheimer bietet nun eine andere Erklärung. Er berücksichtigte, dass Neuronen einen aktiven Verstärkungsmechanismus besitzen. Kommen etwa die Impulse zweier Zellen nahezu gleichzeitig am Neuron an, wird deren Wirkung unter bestimmten Bedingungen nicht nur summiert, sondern weiter verstärkt. "Dieser Mechanismus ist in den vergangenen Jahren durch zahlreiche Experimente belegt worden", erklärt Memmesheimer.

Welche Folgen der neuronale Verstärker für die Prozesse im Gehirn hat, konnte der Wissenschaftler aus Göttingen nun mit Hilfe theoretischer Berechnungen untersuchen. Der Verstärker führt dazu, dass ein Signal leicht die Eingangsschwelle des Neurons überwinden und sich durch das Netzwerk fortpflanzen kann - auch wenn nur vergleichsweise wenige benachbarte Neuronen einen elektrischen Impuls ausgesandt haben.

"Es entstehen Muster, die tatsächlichen Hirnmustern exakt entsprechen", so Memmesheimer. Besonders ein typisches Aktivitätsmuster, das im Hippocampus während bestimmter Schlafphasen auftritt, geben die Berechnungen genau wieder. Da im Hippocampus Gedächtnisinhalte kurzzeitig gespeichert und während der Schlafphasen wiederholt, übertragen und verfestigt werden, könnten diese Ergebnisse grundlegende Bedeutung für unser Verständnis des Erinnerns haben.

Dr. Raoul-Martin Memmesheimer (29) hat an den Universitäten in Kaiserslautern, München und Jena theoretische Physik studiert. Seit 2004 forscht er am Max-Planck-Instituts für Dynamik und Selbstorganisation, wo er 2007 promovierte. Mit der Otto-Hahn-Medaille würdigt die Max-Planck-Gesellschaft jährlich junge Wissenschaftler für herausragende Leistungen.

Dr. Birgit Krummheuer | idw
Weitere Informationen:
http://www.ds.mpg.de/

Weitere Berichte zu: Impuls Neuron

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Spitzenforschung vom Nanodraht bis zur Supernova: Fünf ERC Consolidator Grants für die TU München
14.12.2017 | Technische Universität München

nachricht Leibniz-Preise 2018: DFG zeichnet vier Wissenschaftlerinnen und sieben Wissenschaftler aus
14.12.2017 | Deutsche Forschungsgemeinschaft (DFG)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mitochondrien von Krebszellen im Visier

14.12.2017 | Biowissenschaften Chemie

Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor

14.12.2017 | Geowissenschaften

Leibniz-Preise 2018: DFG zeichnet vier Wissenschaftlerinnen und sieben Wissenschaftler aus

14.12.2017 | Förderungen Preise