Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

54,2 Millionen für Niedersächsische Spitzenforschung

17.11.2010
Vier neue Sonderforschungsbereiche für Niedersachsen

Die Deutsche Forschungsgemeinschaft (DFG) hat in ihrer gestrigen Sitzung im Rahmen des Förderprogramms "Sonderforschungsbereiche" entschieden, in den nächsten vier Jahren insgesamt rund 54,2 Millionen Euro für Projekte der Spitzenforschung an Niedersachsens Hochschulen zur Verfügung zu stellen. Konkret werden vier neue Sonderforschungsbereiche (SFBs) eingerichtet und zwei bereits bestehende fortgesetzt.

Damit folgte die DFG allen vom Land Niedersachsen gestellten Anträgen. „Vier neue Sonderforschungsbereiche sind ein großer Erfolg für Niedersachsen. Dies wird der Spitzenforschung an unseren Hochschulen wertvolle Impulse geben“, sagt der Niedersächsische Ministerpräsident David McAllister.

Die Niedersächsische Ministerin für Wissenschaft und Kultur, Professor Dr. Johanna Wanka, begrüßt die Entscheidung der Deutschen Forschungsgemeinschaft. "Die Leistungsfähigkeit der Forschung in Niedersachsen ist erneut honoriert worden. Die Einrichtung und Fortsetzung der Sonderforschungsbereiche schärft das zukunftsorientierte Profil unserer Hochschulen.“ Bei der Auswahlentscheidung wurden die Biowissenschaften, die Medizin, die Physik und die Ingenieurwissenschaften verstärkt berücksichtigt. Ab Januar 2011 werden insgesamt 27 SFBs an den Universitäten des Landes gefördert. „Die neuen Sonderforschungsbereiche passen gut zu Niedersachsen und unserem Bestreben, die MINT-Fächer zu stärken", betont Wanka.

Folgende Neuanträge wurden freigegeben:

Universität Osnabrück „Physiologie und Dynamik zellulärer Mikrokompartimente“

An der Universität Osnabrück bewilligt die DFG 8,5 Milionen Euro für die Einrichtung des SFB 944 "Physiologie und Dynamik zellulärer Mikrokompartimente". Hoch entwickelte Organismen bestehen aus einer Vielzahl von Zellen, die sich in ihrem inneren Aufbau enorm voneinander unterscheiden können. Der SFB ist der Erforschung von Organisationsformen subzellulärer Bestandteile bis hin zu einzelnen Molekülverbänden gewidmet. Er zielt auf das Erkennen allgemein gültiger Prinzipien der Organisation suborganellarer Strukturen und ihrer Einbettung in die Physiologie der Zelle. Der SFB ist ein interdisziplinärer Verbund aus Arbeitsgruppen der Osnabrücker Biologie, Physik und Mathematik unter Einbeziehung der AG Biophysik der Universität Münster.

Universität Göttingen „Zelluläre Mechanismen sensorischer Verarbeitung“

Die DFG fördert den SFB 889 "Zelluläre Mechanismen sensorischer Verarbeitung" an der Universität Göttingen für vier Jahre mit einer Fördersumme von insgesamt 7,7 Millionen Euro. Die normale Verarbeitung von Sinnesreizen erfordert von Sinneszellen und sensorischen Nervenzellen erstaunliche Leistungen. Dazu benötigen sie hochspezialisierte Signalmaschinerien, die für die Verarbeitung des jeweiligen Sinnesreizes optimiert sind. Bei Fehlfunktionen kommt es zu Sinnesbehinderungen wie Sehstörung oder Schwerhörigkeit. Der SFB 889 verfolgt einen multidisziplinären und integrativen Ansatz, um diese Mechanismen der Reizwandlung und synaptischen Verarbeitung sowie die Funktion neuronaler Netzwerke auf verschiedenen Ebenen vom Proteinkomplex bis zur Wahrnehmung zu untersuchen. Die Betrachtung von unterschiedlichen Sinnen (Sehen, Hören, Riechen und Tastsinn) erlaubt die Untersuchung von generellen Prinzipien und spezialisierten Mechanismen der Sinnesfunktion.

Universität Göttingen „Kollektives Verhalten weicher und biologischer Materie”

Der SFB 937 “Kollektives Verhalten weicher und biologischer Materie” an der Universität Göttingen wird mit rund 7,8 Millionen Euro gefördert. Ziel der Arbeiten, an denen auch Wissenschaftler der Max-Planck-Institute für Dynamik und Selbstorganisation und für biophysikalische Chemie sowie der Universität Potsdam beteiligt sind, ist die Erforschung der Selbstorganisation, Kooperativität und Nichtgleichgewichts-Dynamik weicher Materie. Sowohl in der theoretischen Methodenentwicklung als auch der Etablierung experimenteller Aufbauten ergeben sich hier neue Herausforderungen, die eine enge Zusammenarbeit zwischen Theorie und Experiment einerseits und Chemie, Biologie und Physik andererseits erfordern. Fachübergreifend soll die kollektive Dynamik von Makromolekülen und Membranen innerhalb und außerhalb zellulärer Einheiten beschrieben und in Verbindung mit der Dynamik lebender Systeme fernab vom Gleichgewicht gebracht werden. Daraus soll ein gemeinsames Bild von der Physik weicher Materie entstehen, welches über das bloße Verständnis der Summe der Einzelmoleküle hinausgeht und die Brücke zwischen erprobten Kontinuumsmodellen makroskopischer Systeme und dem Einzelmolekül schlägt.

Technische Universität Braunschweig „Grundlagen des Hochauftriebs künftiger Verkehrsflugzeuge“

An der Technischen Universität Braunschweig wird der SFB 880 „Grundlagen des Hochauftriebs künftiger Verkehrsflugzeuge“ mit einer Fördersumme von 7,6 Millionen Euro gefördert. An diesem ehrgeizigen Verbundprojekt werden Wissenschaftlerinnen und Wissenschaftler der TU Braunschweig, der Universität Hannover sowie des Deutschen Zentrums für Luft- und Raumfahrt e.V. – Standort Braunschweig – in 15 wissenschaftlichen Teilprojekten zusammenarbeiten. Im Fokus steht die Weiterentwicklung heutiger Verkehrsflugzeuge, die zukünftig den Mobilitätsanforderungen der modernen Industriegesellschaft gerecht werden sollen. Die Forschungsarbeiten konzentrieren sich im Wesentlichen auf noch nicht vorhandene Technologien für Hochauftriebssysteme, vor allem im Bereich der Lärmminderung.

Folgende erfolgreiche Sonderforschungsbereiche können fortgesetzt werden:

„Biomedizintechnik"

Seit 2003 beschäftigt sich der SFB 599 „Biomedizintechnik" am Standort Hannover/Braunschweig mit der Erforschung bioresorbierbarer und permanenter medizinischer Implantate aus metallischen und keramischen Werkstoffen. Dabei greift der SFB 599 aktuelle Probleme und Fragestellungen aus der klinischen Anwendung in den Bereichen Hals-Nasen-Ohrenheilkunde, Orthopädie, Unfallchirurgie, Zahnheilkunde und Kardiochirurgie auf. Besonderes Merkmal des SFB 599 ist die breit angelegte, interdisziplinäre Zusammenarbeit zwischen Naturwissenschaftlern, Ingenieuren, Human- und Tiermedizinern. Projektbeteiligte sind die Medizinische Hochschule Hannover, die Leibniz Universität Hannover, die Tierärztliche Hochschule Hannover, die Technische Universität Braunschweig, das Helmholtz–Zentrum für Infektionsforschung in Braunschweig sowie das Laser Zentrum Hannover e.V. Ziel dieser richtungweisenden Forschung ist die Verbesserung von Implantaten, sowohl im Hinblick auf ihre (dauerhafte) Funktionsfähigkeit als auch im Hinblick auf ihre biologische Verträglichkeit. Die Ergebnisse werden in den nächsten Jahren gezielt in den Transfer für die Entwicklung neuer Medizinprodukte einfließen. Der SFB wird von der DFG in seiner letzten Förderphase mit 11,6 Millionen Euro unterstützt.

„Gravitationswellenastronomie: Methoden – Quellen – Beobachtungen“

Seit 2003 unterstützt die DFG den SFB/Transregio 7 "Gravitationswellenastronomie". Gravitationswellen gehören zur Gravitation wie elektromagnetische Wellen zum Elektromagnetismus. Gravitationswellenastronomie macht da weiter, wo die Astronomie mit elektromagnetischen Wellen an Grenzen stößt: Gravitationswellen tragen Informationen etwa über extrem kompakte Objekte, aus dem Innersten von Supernova-Explosionen oder gar vom Urknall, der Geburt unseres Universums. Dieses Potential zu nutzen erfordert enorme Anstrengungen in Relativitätstheorie, Astronomie und Messtechnik. Universitäten und Max-Planck-Institute aus Jena, Tübingen, Hannover, Garching und Potsdam stellen sich gemeinsam den Herausforderungen dieses innovativen Zweigs der Astronomie und beschäftigen sich mit den mathematischen Grundlagen, der physikalischen Modellbildung, numerischen Simulationen, hochgezüchteter experimenteller Technik sowie ausgefeilter Computeralgorithmen zur Datenanalyse. Rund 11 Millionen Euro stellt die DFG für die letzte Förderungsphase des SFB zur Verfügung.

Im Übrigen sind Wissenschaftler der Universität Oldenburg am SFB 597 „Staatlichkeit im Wandel“ beteiligt, der seit 2003 an der Universität Bremen (Sprecherhochschule) läuft.

Darüber hinaus beteiligen sich Braunschweiger Wissenschaftler am SFB/Transregio 32 „Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation“ mit den Standorten Bonn/Aachen/Köln und Braunschweig.

Petra Wundenberg | idw
Weitere Informationen:
http://www.mwk.niedersachsen.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

nachricht Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie
19.09.2017 | Paul-Martini-Stiftung (PMS)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften