Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Witterungs- und langzeitstabile Solarfolie für die gebäudeintegrierte Photovoltaik

03.09.2013
Die Fraunhofer-Institute FEP, ISC und IVV starteten am 1. Mai 2013 das BMBF-geförderte Projekt »flex25« zur Entwicklung von Solar-Verkapselungsfolie für leichtgewichtige, flexible Solarzellen.

Mit derartigen Solarzellen könnten vor allem bisher ungenutzte Gebäudeflächen, wie industrielle Flachdächer, Fassaden oder großflächige Fenster, für die Energiegewinnung erschlossen werden.


Verkapselungsfolien für flexible Solarzellen sollen im Projekt »flex25« an Umweltbedingungen wie UV-Strahlung angepasst werden.

Gebäude werden bislang nur zu einem geringen Prozentsatz zur Energieproduktion genutzt. Fassaden, Fensterscheiben, Verschattungen oder Flachdächer bieten jedoch riesige freie Flächen, in die sich Photovoltaikmodule integrieren ließen. So wird erwartet, dass bis zu 50 Prozent des Energiebedarfes langfristig mit gebäudeintegrierter Photovoltaik (BIPV) gedeckt werden könnten.

Die Dünnschicht-Photovoltaik eröffnet aufgrund ihrer Flexibilität, des geringen Gewichtes und der Möglichkeit, unterschiedliche Transparenzgrade und Farben einzustellen, ganz neue Wege, Photovoltaik in die Gebäudehülle zu integrieren.

Bislang mangelt es flexiblen Solarzellen jedoch häufig noch an der Witterungsbeständigkeit und einer ausreichenden Lebensdauer. Vor allem die aktiven Schichten innerhalb eines Solarmoduls reagieren sehr empfindlich auf Wasserdampf und Sauerstoff und müssen bestmöglich vor den Umgebungsbedingungen geschützt werden, droht ansonsten doch ein Verlust des Wirkungsgrades.

Die Fraunhofer-Institute für Elektronenstrahl- und Plasmatechnik FEP, für Silicatforschung ISC und für Verfahrenstechnik und Verpackung IVV haben in mehrjährigen Forschungsprojekten bereits Schichtsysteme und Herstellungsverfahren entwickelt, mit denen flexible Elektronikprodukte wie organische Leuchtdioden (OLEDs) oder Displays sehr effektiv vor Wasserdampf und Sauerstoff geschützt werden können. Die von den Wissenschaftlern entwickelte Technologie erreicht derzeit eine der niedrigsten Wasserdampfdurchlässigkeiten für Rolle-zu-Rolle hergestellte Systeme weltweit.

Um das bewährte Schichtsystem auch für Außenanwendungen, wie für den Einsatz in flexiblen Solarzellen, zu qualifizieren, wollen die Wissenschaftler im Rahmen des innerhalb der BMBF-Fördermaßnahme »Validierung des Innovationspotenzials wissenschaftlicher Forschung – VIP« geförderten Projektes »flex25« (Förderkennzeichen: 03V0224, Projektlaufzeit: 3 Jahre) die UV- und Witterungsbeständigkeit der Verkapselungsfolie verbessern. Die Fraunhofer-Forscher möchten validieren, ob sich ihre bisher entwickelte Verkapselungstechnologie für die Außenanwendung Photovoltaik anpassen lässt. Dabei soll die Technologie auf ein UV- und witterungsbeständiges Substrat übertragen und die Beständigkeit der Schichtmaterialien selbst gegenüber Umweltbedingungen wie UV-Strahlung erhöht werden. Das Konsortium nutzt dabei seine Erfahrungen auf dem Gebiet der Photovoltaik und Frontseitenverkapselung und setzt kostengünstige Rolle-zu-Rolle-Verfahren ein. Ziel des Projektes ist die Rolle-zu-Rolle-Herstellung einer leichtgewichtigen, langzeitstabilen Frontverkapselung von Solarzellen mit einer Lebensdauer von 25 Jahren.

Eine für den Außenbereich taugliche Verkapselungsfolie ist derzeit weltweit nicht verfügbar, wäre aber enorm wichtig für den Durchbruch gebäudeintegrierter Photovoltaik. So ließe sich beispielsweise durch den Ersatz des Frontglases durch eine Kunststofffolie das Gewicht eines typischen Solarmoduls um ca. 40 Prozent reduzieren und statisch anspruchsvolle Flächen wie industrielle Flachdächer für die Photovoltaik nutzen.

Pressekontakt:
Annett Arnold
Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | annett.arnold@fep.fraunhofer.de

Winterbergstraße 28 | 01277 Dresden | Deutschland | www.fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Weitere Informationen:
http://www.fep.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle

17.08.2017 | Energie und Elektrotechnik

Forschungsprojekt zu optimierten Oberflächen von Metallpulver-Spritzguss-Werkzeugen

17.08.2017 | Verfahrenstechnologie

Fernerkundung für den Naturschutz

17.08.2017 | Ökologie Umwelt- Naturschutz