Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirtschaftliches Herstellungsverfahren und homogene Leuchtkraft für OLEDs dank mikroskaliger Leiterbahnen

18.11.2009
Der Trend in der Beleuchtungstechnik geht zur flächigen und dekorativen Beleuchtung, wie sie durch organische Leuchtdioden, kurz OLEDs, erreicht werden kann.

Analysten von NanoMarkets prognostizieren für 2012 ein weltweites Marktvolumen von über 2,9 Mrd. US $, bis 2014 sollen diese Umsätze auf rund 5,9 Mrd. US $ steigen.

Die Beleuchtungsindustrie sucht nun nach wirtschaftlichen Herstellungsverfahren für organische Leuchtmittel. In Zusammenarbeit mit Philips entwickelt das Fraunhofer-Institut für Lasertechnik ILT ein innovatives, kosteneffizientes Verfahren zur Aufbringung von Leiterbahnen auf OLEDs.

OLEDs (organic light emitting diodes) sind hocheffiziente Lichtquellen auf Basis organischer Materialien, die bei geringem Energieverbrauch eine hohe Lichtstärke erzielen können. Sie bestehen aus einer oder mehreren aktiven Organikschichten, die über zwei flächige Elektroden unter Spannung gesetzt werden. Der initiierte Stomfluss führt zu Elektronen-Loch-Rekombinationen in der Organikschicht. Dadurch werden Photonen erzeugt, die durch die leitfähige, transparente Anode - bestehend aus Indiumzinnoxid (ITO) oder ähnlichen Materialien - in den Halbraum strahlen.

Zur gleichmäßigen Verteilung der elektrischen Energie über die gesamte Fläche der OLEDs werden Leiterbahnen aus Metall auf die ITO-Schicht aufgetragen. Die Strukturgröße der Leiterbahnen spielt hierbei eine wichtige Rolle: Sind die Bahnen zu breit, können sie das homogene Leuchtbild der Lichtquelle beeinträchtigen. Neben der angestrebten Senkung der Herstellungskosten für OLEDs verfolgt die Beleuchtungsindustrie die Erzeugung kleinster Strukturen mit großem Interesse. Gefordert ist nun ein Verfahren, mit dem schmale metallische Leiterbahnen energie- und ressourceneffizient erzeugt werden können.

Bislang wurde das metallische Leitermaterial mithilfe eines energieintensiven Hochvakuum-Sputterprozesses auf die Oberfläche der OLEDs aufgebracht. Dabei wurde eine atomare Schicht unter Hochvakuum flächendeckend auf das Substrat gestäubt und mit einem fotolithografischen Verfahren genau dort wieder entfernt, wo keine Leiterbahnen entstehen sollten. Dieser subtraktive Prozess ist aufgrund des hohen Aufwands beim Beschichten und anschließenden Entfernen der überschüssigen Metallschicht sowie wegen des Materialverlusts von bis zu 90% sehr teuer. Zudem ist der fotolithografische Abtrag umweltschädlich, da die mit Metallen durchsetzte Ätzlösung nach ihrer Verwendung entsorgt werden muss. Die konventionell erzeugten Leiterbahnen weisen eine Breite von bis zu 120 µm auf und stellen somit ein optisches Störelement für die homogene Leuchtkraft der OLEDs dar.

Additiver Prozess soll Kosten senken und die Umwelt schonen

Das Fraunhofer ILT entwickelt nun für den Industriepartner Philips ein Laser-Verfahren zum Aufbringen mikroskaliger Leiterbahnen. Auf die Oberfläche des Halbleiters wird eine Maskenfolie aufgelegt, die das Negativ zur später gewünschten Leiterbahngeometrie darstellt. Darauf wird eine Quellfolie angebracht, aus deren Material die zu erzeugende Leiterbahn bestehen soll, beispielsweise Aluminium oder Kupfer. Der Aufbau wird fixiert und mit Laserstrahlung in einer Geschwindigkeit von bis zu 2,5 m/s entlang der Maskengeometrie beaufschlagt. Es bildet sich ein Gemisch aus Schmelzetropfen und Dampf, das von der Quellfolie aus auf das Substrat transferiert wird. Das erstarrte Gemisch ergibt die Leiterbahn, deren Geometrie durch die Maske vorgegeben ist. Da der Prozess an der Umgebungsatmosphäre stattfindet, kann auf eine aufwändige Prozesskammer verzichtet werden. Es entsteht kein Materialverlust, denn das restliche Material der Quellfolie kann wiederverwendet werden.

"Auf diese Weise können wir schmale metallische Bahnen mit einstellbaren Breiten zwischen 40 und 100 µm erzeugen. Sie weisen variable Dicken zwischen 3 und 15 µm sowie einen Flächenwiderstand von Leiterbahnen kommen überall dort zum Einsatz, wo elektrische Energie über nichtleitende Oberflächen aus Glas, Silizium oder anderen Materialien geführt werden soll. Daraus ergeben sich weitere Anwendungen des innovativen Prozesses, beispielsweise für beheizbare Scheiben im Automobil- und Sonderfahrzeugbau sowie für die Fertigung von Halbleitern in der Solarzellentechnologie. Durch zu breite Leiterbahnen entstehen im Fahrzeugbereich Sichteinschränkungen. In der Photovoltaik führen sie aufgrund von Abschattung zu Effizienzeinbußen. In diesen Bereichen besteht daher ebenfalls die konsequente Forderung nach mikroskaligen Leiterbahnen.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dipl.-Ing. Christian Vedder
Abteilung Oberflächentechnik
Telefon +49 241 8906-378
christian.vedder@ilt.fraunhofer.de
Dr. Konrad Wissenbach
Abteilung Oberflächentechnik
Telefon +49 241 8906-147
konrad.wissenbach@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | idw
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Geräteschutzschalter erfüllt NEC Class 2
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Elektronikgehäuse für Anzeigeeinheiten
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften