Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wirtschaftliches Herstellungsverfahren und homogene Leuchtkraft für OLEDs dank mikroskaliger Leiterbahnen

18.11.2009
Der Trend in der Beleuchtungstechnik geht zur flächigen und dekorativen Beleuchtung, wie sie durch organische Leuchtdioden, kurz OLEDs, erreicht werden kann.

Analysten von NanoMarkets prognostizieren für 2012 ein weltweites Marktvolumen von über 2,9 Mrd. US $, bis 2014 sollen diese Umsätze auf rund 5,9 Mrd. US $ steigen.

Die Beleuchtungsindustrie sucht nun nach wirtschaftlichen Herstellungsverfahren für organische Leuchtmittel. In Zusammenarbeit mit Philips entwickelt das Fraunhofer-Institut für Lasertechnik ILT ein innovatives, kosteneffizientes Verfahren zur Aufbringung von Leiterbahnen auf OLEDs.

OLEDs (organic light emitting diodes) sind hocheffiziente Lichtquellen auf Basis organischer Materialien, die bei geringem Energieverbrauch eine hohe Lichtstärke erzielen können. Sie bestehen aus einer oder mehreren aktiven Organikschichten, die über zwei flächige Elektroden unter Spannung gesetzt werden. Der initiierte Stomfluss führt zu Elektronen-Loch-Rekombinationen in der Organikschicht. Dadurch werden Photonen erzeugt, die durch die leitfähige, transparente Anode - bestehend aus Indiumzinnoxid (ITO) oder ähnlichen Materialien - in den Halbraum strahlen.

Zur gleichmäßigen Verteilung der elektrischen Energie über die gesamte Fläche der OLEDs werden Leiterbahnen aus Metall auf die ITO-Schicht aufgetragen. Die Strukturgröße der Leiterbahnen spielt hierbei eine wichtige Rolle: Sind die Bahnen zu breit, können sie das homogene Leuchtbild der Lichtquelle beeinträchtigen. Neben der angestrebten Senkung der Herstellungskosten für OLEDs verfolgt die Beleuchtungsindustrie die Erzeugung kleinster Strukturen mit großem Interesse. Gefordert ist nun ein Verfahren, mit dem schmale metallische Leiterbahnen energie- und ressourceneffizient erzeugt werden können.

Bislang wurde das metallische Leitermaterial mithilfe eines energieintensiven Hochvakuum-Sputterprozesses auf die Oberfläche der OLEDs aufgebracht. Dabei wurde eine atomare Schicht unter Hochvakuum flächendeckend auf das Substrat gestäubt und mit einem fotolithografischen Verfahren genau dort wieder entfernt, wo keine Leiterbahnen entstehen sollten. Dieser subtraktive Prozess ist aufgrund des hohen Aufwands beim Beschichten und anschließenden Entfernen der überschüssigen Metallschicht sowie wegen des Materialverlusts von bis zu 90% sehr teuer. Zudem ist der fotolithografische Abtrag umweltschädlich, da die mit Metallen durchsetzte Ätzlösung nach ihrer Verwendung entsorgt werden muss. Die konventionell erzeugten Leiterbahnen weisen eine Breite von bis zu 120 µm auf und stellen somit ein optisches Störelement für die homogene Leuchtkraft der OLEDs dar.

Additiver Prozess soll Kosten senken und die Umwelt schonen

Das Fraunhofer ILT entwickelt nun für den Industriepartner Philips ein Laser-Verfahren zum Aufbringen mikroskaliger Leiterbahnen. Auf die Oberfläche des Halbleiters wird eine Maskenfolie aufgelegt, die das Negativ zur später gewünschten Leiterbahngeometrie darstellt. Darauf wird eine Quellfolie angebracht, aus deren Material die zu erzeugende Leiterbahn bestehen soll, beispielsweise Aluminium oder Kupfer. Der Aufbau wird fixiert und mit Laserstrahlung in einer Geschwindigkeit von bis zu 2,5 m/s entlang der Maskengeometrie beaufschlagt. Es bildet sich ein Gemisch aus Schmelzetropfen und Dampf, das von der Quellfolie aus auf das Substrat transferiert wird. Das erstarrte Gemisch ergibt die Leiterbahn, deren Geometrie durch die Maske vorgegeben ist. Da der Prozess an der Umgebungsatmosphäre stattfindet, kann auf eine aufwändige Prozesskammer verzichtet werden. Es entsteht kein Materialverlust, denn das restliche Material der Quellfolie kann wiederverwendet werden.

"Auf diese Weise können wir schmale metallische Bahnen mit einstellbaren Breiten zwischen 40 und 100 µm erzeugen. Sie weisen variable Dicken zwischen 3 und 15 µm sowie einen Flächenwiderstand von Leiterbahnen kommen überall dort zum Einsatz, wo elektrische Energie über nichtleitende Oberflächen aus Glas, Silizium oder anderen Materialien geführt werden soll. Daraus ergeben sich weitere Anwendungen des innovativen Prozesses, beispielsweise für beheizbare Scheiben im Automobil- und Sonderfahrzeugbau sowie für die Fertigung von Halbleitern in der Solarzellentechnologie. Durch zu breite Leiterbahnen entstehen im Fahrzeugbereich Sichteinschränkungen. In der Photovoltaik führen sie aufgrund von Abschattung zu Effizienzeinbußen. In diesen Bereichen besteht daher ebenfalls die konsequente Forderung nach mikroskaligen Leiterbahnen.

Ansprechpartner im Fraunhofer ILT
Für Fragen stehen Ihnen unsere Experten zur Verfügung:
Dipl.-Ing. Christian Vedder
Abteilung Oberflächentechnik
Telefon +49 241 8906-378
christian.vedder@ilt.fraunhofer.de
Dr. Konrad Wissenbach
Abteilung Oberflächentechnik
Telefon +49 241 8906-147
konrad.wissenbach@ilt.fraunhofer.de
Fraunhofer-Institut für Lasertechnik ILT
Steinbachstraße 15
52074 Aachen
Tel. +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | idw
Weitere Informationen:
http://www.ilt.fraunhofer.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie