Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Windkraftanlagen lernen das Schwimmen

24.04.2013
19 Millionen für die Weiterentwicklung der Offshore-Technologie

Große Offshore Windparks vor der Nord- und Ostseeküste sollen künftig viele hundert Megawatt Strom produzieren und sind - gemeinsam mit den Anlagen an Land - ein Grundpfeiler bei der Umsetzung der Energiewende.


Simulationsmodell einer schwimmenden Offshore-Windenergieanlage. Abbildung: IDEOL

Dabei gilt: je weiter weg von der Küste, desto stärker, gleichmäßiger und besser vorhersagbar weht der Wind. Ab einer bestimmten Wassertiefe sind die bisher gängigen fest installierten Fundamente von Offshore Anlagen jedoch zu teuer. Wissenschaftler des Lehrstuhls für Windenergie (SWE) der Universität Stuttgart forschen jetzt an schwimmenden Windenergieanlagen, die auch bei Wassertiefen von über 40 Metern eingesetzt werden können. Dies soll die Nutzung der Windkraft auch in steil abfallenden Gewässern, zum Beispiel im Mittelmeer vor Spanien, im Westen der USA oder in Japan ermöglichen.

In dem Projekt mit dem Namen FLOATGEN (Demonstration of Two Floating Wind Turbine Systems for Power Generation in Southern European Deep Waters) wollen die beteiligten Wissenschaftler und Unternehmen aus Deutschland, Frankreich, Spanien, Großbritannien, Norwegen und Belgien die technische und finanzielle Machbarkeit schwimmender Windenergieanlagen für Wassertiefen von über 40 Metern demonstrieren.
Solche Anlagen werden nicht durch Stahl- oder Betonfundamente fest im Boden verankert, sondern auf einer schwimmenden Plattform installiert, welche je nach Konzept bis über hundert Meter unter die Wasseroberfläche reichen kann. Um ein Wegschwimmen zu vermeiden und die Stabilität zu gewährleisten, wird ein Vertäuungssystem zwischen Plattform und Meeresboden befestigt. Im Jahr 2015 werden Prototypen der multi-Megawatt Klasse in südeuropäischen Gewässern installiert.

Wirtschaftlich und flexibel
Hauptziel des Projektes ist die Verringerung der Investitionskosten schwimmender Windenergieanlagen sowie der Vergleich mit ähnlichen Projekten auf festen Fundamentstrukturen. Auch eine Umweltverträglichkeitsstudie gehört zum Projektumfang. Neben den wirtschaftlichen Pluspunkten versprechen sich die Wissenschaftler weitere Vorteile. So können schwimmende Windkraftanlagen flexibler positioniert werden. Dadurch kann man diese einerseits nicht sichtbar vom Festland fernab der Küsten bauen. Dort ist die Energieausbeute größer, da der Wind stärker, konstanter und vorhersehbarer bläst.
Andererseits ist auch die Installation in der Nähe großer Städte wie Tokyo oder New York möglich, was die elektrischen Verluste beim Stromtransport gering hält. Sensible Regionen wie Naturschutzgebiete, Schifffahrtswege oder militärische Zonen lassen sich gut umgehen. Selbst die Wartung großer Komponenten dürfte einfacher werden, da schwimmende Plattformen nicht auf rauer See repariert werden müssen, sondern in den sicheren Hafen geschleppt werden können.

FLOATGEN wird aus dem 7. Forschungsrahmenprogramm der Europäischen Kommission mitfinanziert. Mit einem Antragsvolumen von 36 Millionen Euro und bisher bewilligten Fördergeldern von über 19 Millionen Euro an das multinationale Konsortium ist es das bisher größte öffentlich geförderte Projekt der Europäischen Kommission im Bereich Offshore Windenergie.
320 000 Euro erhalten die Forscher der Universität Stuttgart, die sich mit der computergestützten Simulation des Gesamtsystems schwimmender Windenergieanlagen beschäftigen. Dabei sind die Schwerpunkte die Reduktion dynamisch auftretender Lasten, welche durch Wind und Wellen hervorgerufen werden, und die Entwicklung einer fortschrittlichen Steuerung und Regelung der Anlage. Durch das komplexere dynamische Verhalten von Windenergieanlagen auf schwimmenden Plattformen im Vergleich zu festen Fundamenten ist die Simulation und Optimierung eine besondere Herausforderung.

Partner des FLOATGEN Konsortiums sind: Gamesa (Koordinator, Spanien), IDEOL (Frankreich), Universität Stuttgart, Stuttgarter Lehrstuhl für Windenergie (SWE, Deutschland), ACCIONA Windpower (Spanien), Navantia (Spanien), Olav Olsen (Norwegen), Fraunhofer IWES (Deutschland), RSK Environment Ltd (Großbritannien), Greenovate! Europe (Belgien), ACCIONA Energy (Spanien)

Weitere Informationen:
Friedemann Beyer, Universität Stuttgart, Stuttgarter Lehrstuhl für Windenergie (SWE), Tel. 0711/685-60338, E-Mail: beyer (at) ifb.uni-stuttgart.de

Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation,
Tel. 0711/685-82176, E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Sarine Barsoumian, Greenovate ! Europe, Tel. +32 2400/1007,
E-Mail: sarine.barsoumian (at) greenovate.eu

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie