Wie Kupfer organische Leuchtdioden effizienter macht

Farbstoffe als Grundlage für organische Leuchtdioden werden dank dem Wissen über ihre Quantenmechanik maßgeschneidert. KIT

Organische Leuchtdioden gelten als Lichtquelle der Zukunft. Sie geben Licht gleichmäßig in alle Betrachtungsrichtungen ab, liefern brillante Farben und hohe Kontraste. Da OLEDs (Organic Light Emitting Diodes) sich auch transparent und flexibel herstellen lassen, eröffnen sie neue Anwendungs- und Gestaltungsmöglichkeiten, wie flächige Lichtquellen auf Fensterscheiben oder rollbare Displays.

OLEDs bestehen aus ultradünnen Schichten organischer Materialien, die als Emitter dienen, zwischen zwei Elektroden. Beim Anlegen einer Spannung werden Elektronen von der Kathode sowie Löcher (positive Ladungen) von der Anode in den Emitter injiziert.

Dort treffen Elektronen und Löcher zu gebundenen Elektronen-Loch-Paaren zusammen. Bei diesen sogenannten Exzitonen handelt es sich um Quasiteilchen im angeregten Zustand. Sie zerfallen anschließend in ihren Ausgangszustand und geben dabei Energie frei.

Allerdings können die Exzitonen zwei verschiedene Zustände annehmen: Singulett-Exzitonen zerfallen sofort wieder und senden Licht aus, während Triplett-Exzitonen ihre Energie als Wärme freigeben. In OLEDs treten gewöhnlich 25 Prozents Singuletts und 75 Prozent Tripletts auf.

Um die Energieeffizienz einer OLED zu erhöhen, müssen auch die Triplett-Exzitonen zur Lichterzeugung genutzt werden. Dies geschieht in herkömmlichen organischen Leuchtdioden durch die Beimischung von Schwermetallen wie Iridium oder Platin, die teuer und nur begrenzt verfügbar sind sowie aufwendige Herstellungsverfahren bedingen.

Eine kostengünstigere und umweltverträglichere Möglichkeit besteht im Einsatz von Kupferkomplexen als Emittermaterialien. Dabei sorgt thermisch aktivierte verzögerte Fluoreszenz (TADF – Thermally Activated Delayed Fluorescence) für hohe Lichtausbeute und damit hohe Effizienz: Triplett-Exzitonen werden in Singlet-Exzitonen verwandelt, die wiederum Photonen aussenden.

TADF beruht auf dem quantenmechanischen Phänomen des Intersystem Crossing (ISC), einem Übergang von einem elektronischen Anregungszustand in einen anderen mit veränderterer Multiplizität, beispielsweise vom Singulett zum Triplett und umgekehrt.

Bei organischen Molekülen bestimmend ist dabei die Spin-Bahn-Kopplung, das heißt die Wechselwirkung des Bahndrehimpulses eines Elektrons in einem Atom mit dem Spin des Elektrons. So lassen sich alle Exzitonen, Tripletts wie Singuletts, zur Lichterzeugung nutzen. Kupfer als Leuchtstoff erreicht mit TADF eine Effizienz von 100 Prozent.

Stefan Bräse und Larissa Bergmann vom Institut für Organische Chemie (IOC) des KIT haben nun gemeinsam mit Forschern des OLED-Technologie-Unternehmens CYNORA und der Universität Saint Andrews in Groß-Britannien erstmals die Geschwindigkeit des Intersystem Crossing in einem hoch lumineszierenden Kupfer(I)-Komplex in festem Zustand mit thermisch aktivierter verzögerter Fluoreszenz gemessen. Über die Ergebnisse berichten sie im Magazin Science Advances.

Als Zeitkonstante für das Intersystem Crossing von Singulett zu Triplett ermittelten die Wissenschaftler 27 Pikosekunden (27 billionstel Sekunden). Der umgekehrte Vorgang – Reverse Intersystem Crossing – von Triplet zu Singulett geht langsamer vonstatten und führt zu einer TADF, die durchschnittlich 11,5 Mikrosekunden anhält. Diese Messungen führen zu einem besseren Verständnis der Mechanismen, die zu TADF führen, und erleichtern damit die gezielte Entwicklung von TADF-Materialien für energieeffiziente OLEDs.

Larissa Bergmann, Gordon J. Hedley, Thomas Baumann, Stefan Bräse, Ifor D. W. Samuel: Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Science Advances, January 2016. DOI:
10.1126/sciadv.1500889

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Weiterer Kontakt:

Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

http://www.energie.kit.edu
http://www.kit.edu

Media Contact

Monika Landgraf idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer