Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Kupfer organische Leuchtdioden effizienter macht

04.01.2016

Der Einsatz von Kupfer als Leuchtstoff ermöglicht kostengünstige und umweltverträgliche organische Leuchtdioden (OLEDs). Dabei sorgt die thermisch aktivierte verzögerte Fluoreszenz (TADF) für eine hohe Lichtausbeute. Wissenschaftler des Karlsruher Instituts für Technologie (KIT), der CYNORA GmbH und der Universität Saint Andrews haben nun das zugrundeliegende quantenmechanische Phänomen des Intersystem Crossing in einem Kupferkomplex gemessen. Die Ergebnisse der Grundlagenarbeit, welche die Forscher in der Zeitschrift Science Advances vorstellen, tragen zu energieeffizienteren OLEDs bei.

Organische Leuchtdioden gelten als Lichtquelle der Zukunft. Sie geben Licht gleichmäßig in alle Betrachtungsrichtungen ab, liefern brillante Farben und hohe Kontraste. Da OLEDs (Organic Light Emitting Diodes) sich auch transparent und flexibel herstellen lassen, eröffnen sie neue Anwendungs- und Gestaltungsmöglichkeiten, wie flächige Lichtquellen auf Fensterscheiben oder rollbare Displays.


Farbstoffe als Grundlage für organische Leuchtdioden werden dank dem Wissen über ihre Quantenmechanik maßgeschneidert.

KIT

OLEDs bestehen aus ultradünnen Schichten organischer Materialien, die als Emitter dienen, zwischen zwei Elektroden. Beim Anlegen einer Spannung werden Elektronen von der Kathode sowie Löcher (positive Ladungen) von der Anode in den Emitter injiziert.

Dort treffen Elektronen und Löcher zu gebundenen Elektronen-Loch-Paaren zusammen. Bei diesen sogenannten Exzitonen handelt es sich um Quasiteilchen im angeregten Zustand. Sie zerfallen anschließend in ihren Ausgangszustand und geben dabei Energie frei.

Allerdings können die Exzitonen zwei verschiedene Zustände annehmen: Singulett-Exzitonen zerfallen sofort wieder und senden Licht aus, während Triplett-Exzitonen ihre Energie als Wärme freigeben. In OLEDs treten gewöhnlich 25 Prozents Singuletts und 75 Prozent Tripletts auf.

Um die Energieeffizienz einer OLED zu erhöhen, müssen auch die Triplett-Exzitonen zur Lichterzeugung genutzt werden. Dies geschieht in herkömmlichen organischen Leuchtdioden durch die Beimischung von Schwermetallen wie Iridium oder Platin, die teuer und nur begrenzt verfügbar sind sowie aufwendige Herstellungsverfahren bedingen.

Eine kostengünstigere und umweltverträglichere Möglichkeit besteht im Einsatz von Kupferkomplexen als Emittermaterialien. Dabei sorgt thermisch aktivierte verzögerte Fluoreszenz (TADF – Thermally Activated Delayed Fluorescence) für hohe Lichtausbeute und damit hohe Effizienz: Triplett-Exzitonen werden in Singlet-Exzitonen verwandelt, die wiederum Photonen aussenden.

TADF beruht auf dem quantenmechanischen Phänomen des Intersystem Crossing (ISC), einem Übergang von einem elektronischen Anregungszustand in einen anderen mit veränderterer Multiplizität, beispielsweise vom Singulett zum Triplett und umgekehrt.

Bei organischen Molekülen bestimmend ist dabei die Spin-Bahn-Kopplung, das heißt die Wechselwirkung des Bahndrehimpulses eines Elektrons in einem Atom mit dem Spin des Elektrons. So lassen sich alle Exzitonen, Tripletts wie Singuletts, zur Lichterzeugung nutzen. Kupfer als Leuchtstoff erreicht mit TADF eine Effizienz von 100 Prozent.

Stefan Bräse und Larissa Bergmann vom Institut für Organische Chemie (IOC) des KIT haben nun gemeinsam mit Forschern des OLED-Technologie-Unternehmens CYNORA und der Universität Saint Andrews in Groß-Britannien erstmals die Geschwindigkeit des Intersystem Crossing in einem hoch lumineszierenden Kupfer(I)-Komplex in festem Zustand mit thermisch aktivierter verzögerter Fluoreszenz gemessen. Über die Ergebnisse berichten sie im Magazin Science Advances.

Als Zeitkonstante für das Intersystem Crossing von Singulett zu Triplett ermittelten die Wissenschaftler 27 Pikosekunden (27 billionstel Sekunden). Der umgekehrte Vorgang – Reverse Intersystem Crossing – von Triplet zu Singulett geht langsamer vonstatten und führt zu einer TADF, die durchschnittlich 11,5 Mikrosekunden anhält. Diese Messungen führen zu einem besseren Verständnis der Mechanismen, die zu TADF führen, und erleichtern damit die gezielte Entwicklung von TADF-Materialien für energieeffiziente OLEDs.

Larissa Bergmann, Gordon J. Hedley, Thomas Baumann, Stefan Bräse, Ifor D. W. Samuel: Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Science Advances, January 2016. DOI:
10.1126/sciadv.1500889

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Weiterer Kontakt:

Kosta Schinarakis
PKM – Themenscout
Tel.: +49 721 608 41956
Fax: +49 721 608 43658
E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.energie.kit.edu
http://www.kit.edu

Monika Landgraf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Gedruckte »in-situ« Perowskitsolarzellen – ressourcenschonend und lokal produzierbar
17.05.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Ein elektronischer Rettungshund
17.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics