Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltrekord bei laserprozessierten Solarzellen - Stuttgarter Forscher erreichen 19 Prozent Wirkungsgrad

19.05.2009
Das Institut für Physikalische Elektronik (IPE) der Universität Stuttgart arbeitet seit vielen Jahren erfolgreich an der Entwicklung von neuen Prinzipien und Herstellprozessen für Solarzellen.

Jetzt ist den Doktoranden Sebastian Eisele, Tobias Röder zusammen mit Dr. Jürgen Köhler am IPE von Prof. Jürgen H. Werner ein neuer Coup gelungen: Die Gruppe hat mit dem Laser eine Solarzelle aus kristallinem Silizium hergestellt, die einen Wirkungsgrad von 19 Prozent hat.

Bisherige "laserdotierte" Solarzellen hatten nur einen Wirkungsgrad von 16 Prozent. Der industrietaugliche Prozess eignet sich besonders für noch dünnere Solarzellen.

Bei der Herstellung von Solarzellen ist es in der Industrie bisher üblich, Siliziumscheiben bei hohen Temperaturen in einem so genannten "Diffusionsofen" mit dem für die Funktionsweise der Solarzelle entscheidenden "pn-Übergang", einem Materialübergang in Halbleiterkristallen, zu versehen. Die Stuttgarter Wissenschaftler dagegen erreichen diesen Übergang mit einem gepulsten Laser. Hierzu wird auf die Oberfläche einer Siliziumscheibe, die den elektrischen Strom durch Defektelektronen leitet (p-Typ) leitet, zunächst eine hauchdünne Phosphorschicht aufgebracht. Anschließend heizt ein circa eine Milliardstel Sekunde kurzer Laserpuls die Siliziumschicht in einer Tiefe von weniger als einem Millionstel Meter auf etwa 2000 Grad Celsius auf.

Der Phosphor an der Oberfläche mischt sich mit dem bei dieser Temperatur flüssigen Silizium und wird dann in Sekundenbruchteilen in das kristallisierende Silizium eingebaut. So konvertiert der Phosphor an der Siliziumoberfläche das ursprüngliche p-Typ Silizium in den n-Typ (normale Elektronen) und bildet den pn-Übergang.

Für die Qualität der Solarzelle ist es entscheidend, dass der Laser nur auf einen etwa fünf Tausendstel Millimeter breiten (aber einige Zentimeter langen) Streifen fokussiert ist; nur so gelingt die Herstellung des "pn-Übergangs" in dem patentierten Verfahren völlig defektfrei. Der entscheidende Herstellprozess der Solarzelle dauert an jeder Stelle nur etwa 100 Milliardstel Sekunden. Der Laser wird deshalb Schuss für Schuss im zeitlichen Abstand von weniger als einer zehntausendstel Sekunde über die Oberfläche der Siliziumscheibe gerastert. So ist es möglich, auch große Solarzellenflächen in sehr kurzer Zeit zu bearbeiten. In Zusammenarbeit mit verschiedenen Solarfirmen arbeitet das IPE jetzt an der Industrialisierung des Prozesses, der die Herstellkosten von Solarzellen weiter senken wird.

Der weltweite Photovoltaikmarkt ist inzwischen auf etwa 50 Milliarden Euro Umsatz pro Jahr angewachsen. Über 90 Prozent der verkauften Solarmodule bestehen aus nur rund 180 Mikrometer dünnen Scheiben aus kristallinem Silizium. Durch ständige Steigerungen der Produktionsmengen, der Wirkungsgrade, immer noch dünnere Zellen und durch die Entwicklung neuer, kostengünstiger Produktionsprozesse sinken die Herstellkosten der Zellen und Module ständig. Ziel der weltweiten Forschungs- und Entwicklungsarbeiten ist es, bis etwa im Jahr 2015 die Produktionskosten von Solaranlagen so weit zu senken, dass Photovoltaikstrom nur noch etwa 20 Cent/Kilowattstunde kostet. Dann wäre dieser zum gleichen Preis zu haben wie der "Strom aus der Steckdose".

Weitere Informationen bei Prof. Jürgen Werner, Institut für Physikalische Elektronik, Tel. 0711/685-67140, e-mail: Juergen.Werner@ipe.uni-stuttgart.de

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht IT-Kühlung: So schaffen Kleinbetriebe den Sprung in die IT-Profiliga
23.09.2016 | Rittal GmbH & Co. KG

nachricht Plug & Play: Drei auf einen Streich
29.09.2016 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie