Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltraumexperiment verbessert Verständnis der Vorgänge bei der Produktion von Solarsilizium

27.01.2016

Am 23. Januar 2016 um 9:30 Uhr Mitteleuropäischer Zeit startete vom Raumfahrtzentrum Esrange bei Kiruna in Schweden die unbemannte Forschungsrakete TEXUS 53 in den Weltraum. Der zwanzigminütige Flug der 12,5 Meter hohen und 2,6 Tonnen schweren Rakete des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ging auf eine Höhe von 259 Kilometern. Während des Fluges herrschte sechs Minuten lang Schwerlosigkeit. Forscher des Fraunhofer IISB und der Universität Freiburg nutzten diese Zeit, um auf der Rakete einen Siliziumkristall ohne Einfluss von Gravitation zu züchten.

Das Experiment mit der Kurzbezeichnung ParSiWal-II („Bestimmung der kritischen Einfanggeschwindigkeit von Partikeln bei der gerichteten Erstarrung von Solarsilizium im Weltall“) hilft dabei, die Herstellung von Siliziumkristallen für die Photovoltaik auf der Erde besser zu verstehen. Nach dem Flug von TEXUS 53 brachte ein Fallschirm die Nutzlasten wohlbehalten zum Boden zurück.


Siehe IPTC-Daten

Fraunhofer IISB

Um die industrielle Herstellung von Siliziumkristallen für die Photovoltaik unter terrestrischen Bedingungen besser zu verstehen, führten Forscher vom Fraunhofer IISB in Erlangen und von der Universität Freiburg auf der deutschen Forschungsrakete TEXUS 53 das Weltraumexperiment ParSiWal-II durch.

Das Experiment sollte klären, durch welche Mechanismen Siliziumnitrid-Partikel (Si3N4) bei der Kristallisation in den Siliziumkristall eingebaut werden. Diese Si3N4 wirken sich nämlich nachteilig auf die Eigenschaften des Siliziums aus. ParSiWal-II wird vom DLR-Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Bei der Produktion von Silizium für die Photovoltaik spielen Partikel in Form von Siliziumkarbid (SiC) und Siliziumnitrid (Si3N4) eine große Rolle. Diese sind problematisch für die mechanische Bearbeitung und können den Wirkungsgrad von Solarzellen verschlechtern. In der industriellen Produktion muss deshalb der Einbau der Partikel in den Siliziumkristall vermieden werden.

SiC-Partikel entstehen während der Kristallisation in der Siliziumschmelze. Dabei wird der Kohlenstoff über die Gasphase in die Schmelze eingebracht. Si3N4-Partikel werden hingegen vor allem durch Erosion der standardmäßig eingesetzten Si3N4-Tiegel­beschichtung in die Schmelze eingetragen. Beide Partikelarten bewegen sich dann mit der Strömung durch das Schmelzvolumen und werden schließlich in den Festkörper eingebaut.

„Das Einbauverhalten von SiC-Partikeln bei der Siliziumkristallzüchtung konnten wir bereits erfolgreich auf der TEXUS 51-Mission im April 2015 untersuchen“, erläutert Dr. Christian Reimann, Leiter des ParSiWal-Projektes am Fraunhofer IISB. „In einem 8 mm dünnen Siliziumstab, in den zuvor SiC-Partikel eingebracht wurden, wurde mithilfe eines Spiegelofens in der Umgebung der Partikel eine flüssige Schmelzzone erzeugt.

Anschließend wurde der Siliziumstab mit verschiedenen Geschwindigkeiten in der Ofenanlage verfahren. Dadurch bewegte sich die Schmelzzone durch den Stab und somit auch die sich ausbildende Fest-Flüssig-Phasengrenze.“ Im Gegensatz zum Referenzexperiment auf der Erde wurden die SiC-Partikel im Weltraumexperiment bei deutlich geringeren Wachstumsgeschwindigkeiten in den Kristall eingebaut.

Das liegt daran, dass unter Schwerelosigkeit strömungsbedingte Kräfte fehlen, die die Partikel von der Phasengrenze wegbewegen. Im Umkehrschluss bedeutet dies, dass auf der Erde in der industriellen Produktion der Einbau von SiC-Partikeln in den Siliziumkristall durch gezieltes Rühren der Siliziumschmelze minimiert werden kann.

In der TEXUS 53-Mission wurde jetzt das Einbauverhalten von Si3N4-Partikeln untersucht. Diese unterscheiden sich von SiC bezüglich ihrer Morphologie und in ihrem Benetzungsverhalten. Während die benetzenden SiC-Partikel isometrisch sind, liegt Si3N4 eher nadelförmig vor und verhält sich je nach Verunreinigungsgehalt nicht benetzend.

„Aus theoretischen Modellen ist bekannt, dass beide Größen – also Morphologie und Benetzungsverhalten – die Kräfte, die auf Partikel in der Schmelze vor der Phasengrenze wirken, beeinflussen. Mit dem neuen Weltraumexperiment können wir untersuchen, ob die existierenden Theorien diese Unterschiede richtig wiedergeben oder ob sie um bislang noch nicht berücksichtigte physikalische Effekte erweitert werden müssen“, so Dr. Reimann.

Die Auswertung des Experimentes erfolgt in den nächsten Monaten nach der Rückkehr der Probe zum Fraunhofer IISB. Im Labor lässt sich zum Beispiel exakt die Partikelverteilung im Siliziumstab bestimmen und die existierenden Theorien können auf ihre Gültigkeit überprüft werden.

ParSiWal setzt die lange Tradition der Erlanger Weltraumexperimente auf dem Gebiet der Kristallzüchtung fort. So züchteten Erlanger Forscher bereits auf früheren Raketenflügen (1984, 1988, 1989, 1992, 2015) und sogar auf dem Space Shuttle (1983, 1985, 1993) technische Kristalle.

Zudem hat die am Fraunhofer IISB entwickelte Software CrysMAS® vor etwa 10 Jahren ein aufwendiges Qualifizierungsverfahren bei der Europäischen Raumfahrtagentur ESA bestanden. Seitdem wird das Programm CrysMAS®, das Temperaturverteilungen in Ofenanlagen berechnet, von Experimentatoren aus ganz Europa erfolgreich eingesetzt, um materialwissenschaftliche Experimente auf der Internationalen Raumstation ISS zu unterstützen.

Die Projekte ParSiWal und ParSiWal II wurden vom DLR-Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Ansprechpartner
Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

Das Bildmaterial zur redaktionellen Verwendung finden Sie unter www.iisb.fraunhofer.de

Fraunhofer IISB
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnol-gie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 230 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Weitere Informationen:

http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB
http://www.iisb.fraunhofer.de/presse Pressemeldungen Fraunhofer IISB

Kommunikation | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

nachricht Solarenergie unterstützt Industrieprozesse
17.07.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten