Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltraumexperiment verbessert Verständnis der Vorgänge bei der Produktion von Solarsilizium

27.01.2016

Am 23. Januar 2016 um 9:30 Uhr Mitteleuropäischer Zeit startete vom Raumfahrtzentrum Esrange bei Kiruna in Schweden die unbemannte Forschungsrakete TEXUS 53 in den Weltraum. Der zwanzigminütige Flug der 12,5 Meter hohen und 2,6 Tonnen schweren Rakete des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ging auf eine Höhe von 259 Kilometern. Während des Fluges herrschte sechs Minuten lang Schwerlosigkeit. Forscher des Fraunhofer IISB und der Universität Freiburg nutzten diese Zeit, um auf der Rakete einen Siliziumkristall ohne Einfluss von Gravitation zu züchten.

Das Experiment mit der Kurzbezeichnung ParSiWal-II („Bestimmung der kritischen Einfanggeschwindigkeit von Partikeln bei der gerichteten Erstarrung von Solarsilizium im Weltall“) hilft dabei, die Herstellung von Siliziumkristallen für die Photovoltaik auf der Erde besser zu verstehen. Nach dem Flug von TEXUS 53 brachte ein Fallschirm die Nutzlasten wohlbehalten zum Boden zurück.


Siehe IPTC-Daten

Fraunhofer IISB

Um die industrielle Herstellung von Siliziumkristallen für die Photovoltaik unter terrestrischen Bedingungen besser zu verstehen, führten Forscher vom Fraunhofer IISB in Erlangen und von der Universität Freiburg auf der deutschen Forschungsrakete TEXUS 53 das Weltraumexperiment ParSiWal-II durch.

Das Experiment sollte klären, durch welche Mechanismen Siliziumnitrid-Partikel (Si3N4) bei der Kristallisation in den Siliziumkristall eingebaut werden. Diese Si3N4 wirken sich nämlich nachteilig auf die Eigenschaften des Siliziums aus. ParSiWal-II wird vom DLR-Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Bei der Produktion von Silizium für die Photovoltaik spielen Partikel in Form von Siliziumkarbid (SiC) und Siliziumnitrid (Si3N4) eine große Rolle. Diese sind problematisch für die mechanische Bearbeitung und können den Wirkungsgrad von Solarzellen verschlechtern. In der industriellen Produktion muss deshalb der Einbau der Partikel in den Siliziumkristall vermieden werden.

SiC-Partikel entstehen während der Kristallisation in der Siliziumschmelze. Dabei wird der Kohlenstoff über die Gasphase in die Schmelze eingebracht. Si3N4-Partikel werden hingegen vor allem durch Erosion der standardmäßig eingesetzten Si3N4-Tiegel­beschichtung in die Schmelze eingetragen. Beide Partikelarten bewegen sich dann mit der Strömung durch das Schmelzvolumen und werden schließlich in den Festkörper eingebaut.

„Das Einbauverhalten von SiC-Partikeln bei der Siliziumkristallzüchtung konnten wir bereits erfolgreich auf der TEXUS 51-Mission im April 2015 untersuchen“, erläutert Dr. Christian Reimann, Leiter des ParSiWal-Projektes am Fraunhofer IISB. „In einem 8 mm dünnen Siliziumstab, in den zuvor SiC-Partikel eingebracht wurden, wurde mithilfe eines Spiegelofens in der Umgebung der Partikel eine flüssige Schmelzzone erzeugt.

Anschließend wurde der Siliziumstab mit verschiedenen Geschwindigkeiten in der Ofenanlage verfahren. Dadurch bewegte sich die Schmelzzone durch den Stab und somit auch die sich ausbildende Fest-Flüssig-Phasengrenze.“ Im Gegensatz zum Referenzexperiment auf der Erde wurden die SiC-Partikel im Weltraumexperiment bei deutlich geringeren Wachstumsgeschwindigkeiten in den Kristall eingebaut.

Das liegt daran, dass unter Schwerelosigkeit strömungsbedingte Kräfte fehlen, die die Partikel von der Phasengrenze wegbewegen. Im Umkehrschluss bedeutet dies, dass auf der Erde in der industriellen Produktion der Einbau von SiC-Partikeln in den Siliziumkristall durch gezieltes Rühren der Siliziumschmelze minimiert werden kann.

In der TEXUS 53-Mission wurde jetzt das Einbauverhalten von Si3N4-Partikeln untersucht. Diese unterscheiden sich von SiC bezüglich ihrer Morphologie und in ihrem Benetzungsverhalten. Während die benetzenden SiC-Partikel isometrisch sind, liegt Si3N4 eher nadelförmig vor und verhält sich je nach Verunreinigungsgehalt nicht benetzend.

„Aus theoretischen Modellen ist bekannt, dass beide Größen – also Morphologie und Benetzungsverhalten – die Kräfte, die auf Partikel in der Schmelze vor der Phasengrenze wirken, beeinflussen. Mit dem neuen Weltraumexperiment können wir untersuchen, ob die existierenden Theorien diese Unterschiede richtig wiedergeben oder ob sie um bislang noch nicht berücksichtigte physikalische Effekte erweitert werden müssen“, so Dr. Reimann.

Die Auswertung des Experimentes erfolgt in den nächsten Monaten nach der Rückkehr der Probe zum Fraunhofer IISB. Im Labor lässt sich zum Beispiel exakt die Partikelverteilung im Siliziumstab bestimmen und die existierenden Theorien können auf ihre Gültigkeit überprüft werden.

ParSiWal setzt die lange Tradition der Erlanger Weltraumexperimente auf dem Gebiet der Kristallzüchtung fort. So züchteten Erlanger Forscher bereits auf früheren Raketenflügen (1984, 1988, 1989, 1992, 2015) und sogar auf dem Space Shuttle (1983, 1985, 1993) technische Kristalle.

Zudem hat die am Fraunhofer IISB entwickelte Software CrysMAS® vor etwa 10 Jahren ein aufwendiges Qualifizierungsverfahren bei der Europäischen Raumfahrtagentur ESA bestanden. Seitdem wird das Programm CrysMAS®, das Temperaturverteilungen in Ofenanlagen berechnet, von Experimentatoren aus ganz Europa erfolgreich eingesetzt, um materialwissenschaftliche Experimente auf der Internationalen Raumstation ISS zu unterstützen.

Die Projekte ParSiWal und ParSiWal II wurden vom DLR-Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Ansprechpartner
Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

Das Bildmaterial zur redaktionellen Verwendung finden Sie unter www.iisb.fraunhofer.de

Fraunhofer IISB
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnol-gie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 230 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Weitere Informationen:

http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB
http://www.iisb.fraunhofer.de/presse Pressemeldungen Fraunhofer IISB

Kommunikation | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie