Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltraumexperiment verbessert Verständnis der Vorgänge bei der Produktion von Solarsilizium

27.01.2016

Am 23. Januar 2016 um 9:30 Uhr Mitteleuropäischer Zeit startete vom Raumfahrtzentrum Esrange bei Kiruna in Schweden die unbemannte Forschungsrakete TEXUS 53 in den Weltraum. Der zwanzigminütige Flug der 12,5 Meter hohen und 2,6 Tonnen schweren Rakete des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ging auf eine Höhe von 259 Kilometern. Während des Fluges herrschte sechs Minuten lang Schwerlosigkeit. Forscher des Fraunhofer IISB und der Universität Freiburg nutzten diese Zeit, um auf der Rakete einen Siliziumkristall ohne Einfluss von Gravitation zu züchten.

Das Experiment mit der Kurzbezeichnung ParSiWal-II („Bestimmung der kritischen Einfanggeschwindigkeit von Partikeln bei der gerichteten Erstarrung von Solarsilizium im Weltall“) hilft dabei, die Herstellung von Siliziumkristallen für die Photovoltaik auf der Erde besser zu verstehen. Nach dem Flug von TEXUS 53 brachte ein Fallschirm die Nutzlasten wohlbehalten zum Boden zurück.


Siehe IPTC-Daten

Fraunhofer IISB

Um die industrielle Herstellung von Siliziumkristallen für die Photovoltaik unter terrestrischen Bedingungen besser zu verstehen, führten Forscher vom Fraunhofer IISB in Erlangen und von der Universität Freiburg auf der deutschen Forschungsrakete TEXUS 53 das Weltraumexperiment ParSiWal-II durch.

Das Experiment sollte klären, durch welche Mechanismen Siliziumnitrid-Partikel (Si3N4) bei der Kristallisation in den Siliziumkristall eingebaut werden. Diese Si3N4 wirken sich nämlich nachteilig auf die Eigenschaften des Siliziums aus. ParSiWal-II wird vom DLR-Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Bei der Produktion von Silizium für die Photovoltaik spielen Partikel in Form von Siliziumkarbid (SiC) und Siliziumnitrid (Si3N4) eine große Rolle. Diese sind problematisch für die mechanische Bearbeitung und können den Wirkungsgrad von Solarzellen verschlechtern. In der industriellen Produktion muss deshalb der Einbau der Partikel in den Siliziumkristall vermieden werden.

SiC-Partikel entstehen während der Kristallisation in der Siliziumschmelze. Dabei wird der Kohlenstoff über die Gasphase in die Schmelze eingebracht. Si3N4-Partikel werden hingegen vor allem durch Erosion der standardmäßig eingesetzten Si3N4-Tiegel­beschichtung in die Schmelze eingetragen. Beide Partikelarten bewegen sich dann mit der Strömung durch das Schmelzvolumen und werden schließlich in den Festkörper eingebaut.

„Das Einbauverhalten von SiC-Partikeln bei der Siliziumkristallzüchtung konnten wir bereits erfolgreich auf der TEXUS 51-Mission im April 2015 untersuchen“, erläutert Dr. Christian Reimann, Leiter des ParSiWal-Projektes am Fraunhofer IISB. „In einem 8 mm dünnen Siliziumstab, in den zuvor SiC-Partikel eingebracht wurden, wurde mithilfe eines Spiegelofens in der Umgebung der Partikel eine flüssige Schmelzzone erzeugt.

Anschließend wurde der Siliziumstab mit verschiedenen Geschwindigkeiten in der Ofenanlage verfahren. Dadurch bewegte sich die Schmelzzone durch den Stab und somit auch die sich ausbildende Fest-Flüssig-Phasengrenze.“ Im Gegensatz zum Referenzexperiment auf der Erde wurden die SiC-Partikel im Weltraumexperiment bei deutlich geringeren Wachstumsgeschwindigkeiten in den Kristall eingebaut.

Das liegt daran, dass unter Schwerelosigkeit strömungsbedingte Kräfte fehlen, die die Partikel von der Phasengrenze wegbewegen. Im Umkehrschluss bedeutet dies, dass auf der Erde in der industriellen Produktion der Einbau von SiC-Partikeln in den Siliziumkristall durch gezieltes Rühren der Siliziumschmelze minimiert werden kann.

In der TEXUS 53-Mission wurde jetzt das Einbauverhalten von Si3N4-Partikeln untersucht. Diese unterscheiden sich von SiC bezüglich ihrer Morphologie und in ihrem Benetzungsverhalten. Während die benetzenden SiC-Partikel isometrisch sind, liegt Si3N4 eher nadelförmig vor und verhält sich je nach Verunreinigungsgehalt nicht benetzend.

„Aus theoretischen Modellen ist bekannt, dass beide Größen – also Morphologie und Benetzungsverhalten – die Kräfte, die auf Partikel in der Schmelze vor der Phasengrenze wirken, beeinflussen. Mit dem neuen Weltraumexperiment können wir untersuchen, ob die existierenden Theorien diese Unterschiede richtig wiedergeben oder ob sie um bislang noch nicht berücksichtigte physikalische Effekte erweitert werden müssen“, so Dr. Reimann.

Die Auswertung des Experimentes erfolgt in den nächsten Monaten nach der Rückkehr der Probe zum Fraunhofer IISB. Im Labor lässt sich zum Beispiel exakt die Partikelverteilung im Siliziumstab bestimmen und die existierenden Theorien können auf ihre Gültigkeit überprüft werden.

ParSiWal setzt die lange Tradition der Erlanger Weltraumexperimente auf dem Gebiet der Kristallzüchtung fort. So züchteten Erlanger Forscher bereits auf früheren Raketenflügen (1984, 1988, 1989, 1992, 2015) und sogar auf dem Space Shuttle (1983, 1985, 1993) technische Kristalle.

Zudem hat die am Fraunhofer IISB entwickelte Software CrysMAS® vor etwa 10 Jahren ein aufwendiges Qualifizierungsverfahren bei der Europäischen Raumfahrtagentur ESA bestanden. Seitdem wird das Programm CrysMAS®, das Temperaturverteilungen in Ofenanlagen berechnet, von Experimentatoren aus ganz Europa erfolgreich eingesetzt, um materialwissenschaftliche Experimente auf der Internationalen Raumstation ISS zu unterstützen.

Die Projekte ParSiWal und ParSiWal II wurden vom DLR-Raumfahrtmanagement mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert.

Ansprechpartner
Dr. Jochen Friedrich
Fraunhofer IISB
Schottkystraße 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

Das Bildmaterial zur redaktionellen Verwendung finden Sie unter www.iisb.fraunhofer.de

Fraunhofer IISB
Das 1985 gegründete Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnol-gie IISB betreibt angewandte Forschung und Entwicklung auf den Gebieten der Mikro- und Nanoelektronik, Leistungselektronik und Mechatronik. Mit Technologie-, Geräte- und Materialentwicklungen für die Nanoelektronik sowie seinen Arbeiten zu leistungselektronischen Systemen für Energieeffizienz, Hybrid- und Elektroautomobile genießt das Institut internationale Aufmerksamkeit und Anerkennung. Rund 230 Mitarbeiterinnen und Mitarbeiter arbeiten in der Vertragsforschung für die Industrie und öffentliche Einrichtungen. Neben seinem Hauptsitz in Erlangen hat das IISB zwei weitere Standorte in Nürnberg und Freiberg. Das IISB kooperiert eng mit dem Lehrstuhl für Elektronische Bauelemente der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Weitere Informationen:

http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB
http://www.iisb.fraunhofer.de/presse Pressemeldungen Fraunhofer IISB

Kommunikation | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Netzspannung und Lastströme live und präzise im Blick
24.04.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics