Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zu neuen Solarzellen: Selbstorganisation von Polymeren fördert die Ladungstrennung

27.10.2011
Lichtenergie in elektrischen Strom zu verwandeln ist die Funktion von Solarzellen, die damit eine zentrale Bedeutung für die Gewinnung und Nutzung erneuerbarer Energien haben.

Einem Forschungsteam der Universität Bayreuth, der LMU München und der TU München ist es jetzt gelungen, in organischen Makromolekülen erstmalig den Prozess der Stromerzeugung aus Licht von Anfang an zu beobachten und zu verstehen. Ein weltweit einzigartiger lasertechnischer Versuchsaufbau und die Verwendung von Silizium-basierten Strukturen machten diese Forschungserkenntnisse möglich.

Bei den Forschungsarbeiten kamen neuartige Solarzellen zum Einsatz, die aus einer organischen und einer anorganischen Komponente bestehen; genauer gesagt: aus Kunststoff und aus Silizium. Sie werden daher auch als Hybrid-Solarzellen bezeichnet. Das organische Material hat dabei die Aufgabe, möglichst viel Lichtenergie zu sammeln. Unter Einwirkung des Sonnenlichts werden Paare von positiver und negativer Ladung gebildet, die sich durch die Coulomb-Kraft gegenseitig anziehen. Diese Coulomb-Kraft muss aber überwunden werden, damit die Ladungen sich trennen. Denn nur so entsteht ein Stromfluss. Dabei sorgt die anorganische Komponente dafür, dass die negative Ladung der Elektronen aufgenommen und zur Elektrode abgeleitet wird, während die positive Ladung über die organische Komponente abfließt.

Schnelle Ladungstrennung infolge molekularer Selbstorganisation

Prof. Dr. Anna Köhler und Dipl.-Phys. Christina Scharsich an der Universität Bayreuth haben jetzt entdeckt, dass die Coulomb-Kraft besonders leicht überwunden werden kann, wenn das organische Material eine geordnete molekulare Struktur hat. Für ihre Untersuchungen verwendeten sie den Kunststoff P3HT, ein halbleitendes Polymer, das – abhängig von der jeweiligen Verarbeitungstechnik – entweder in einer ungeordneten, verknäulten Struktur oder in einer selbstorganisierten, geordneten Form vorliegt. "In zahlreichen Experimenten hier in Bayreuth haben wir herausgefunden, wie die P3HT-Polymere aus sich selbst heraus eine regelhafte Struktur anstreben", erklärt Christina Scharsich. "Diese molekulare Selbstorganisation können wir für die Stromerzeugung ausnutzen. Wir bearbeiten die P3HT-Polymere für die Solarzellen so, dass sie ihre Tendenz zur wohlgeordneten Selbstorganisation voll entfalten. Die unter Einwirkung von Lichtenergie erzeugten Paare von positiver und negativer Ladung haben dann viel Platz auf dem Polymer, so dass sie sich besonders leicht trennen. Die Effizienz der Ladungstrennung ist infolge der Selbstorganisation doppelt so hoch."

Präzise Analysen durch Silizium als Elektronenakzeptor

Eine wesentliche Rolle bei diesen Untersuchungen kommt dem Elektronen aufnehmenden Silizium zu. Bisher wurden in organischen Solarzellen meist kugelförmige Kohlenstoffmoleküle („Fullerene“) als Elektronenakzeptor verwendet. Die Fullerene erschweren jedoch die Forschungsarbeiten mit Laserlicht, da sich ihre Signale mit denen des Polymers überlagern. Dieses Problem kann durch die Verwendung von Silizium gelöst werden. Zudem eignet sich Silizium aufgrund seiner hoch geordneten Struktur besonders gut zur Aufnahme und Weiterleitung von Elektronen. Den Wissenschaftlern an der TU München um Prof. Dr. Martin Stutzmann ist es gelungen, Silizium so zu prozessieren, dass es gemeinsam mit Kunststoff zu einer effizienten Solarzelle verarbeitet werden kann. In seiner Rolle als Elektronenakzeptor unterstützt es dabei die Analysen der Umwandlung von Licht in Strom optimal. "Ohne das Silizium in dieser Funktion hätten unsere Untersuchungen nicht zu derartig klaren und präzisen Ergebnissen geführt", erläutert Prof. Dr. Anna Köhler.

Wie Strom aus Licht entsteht:
Neue Einsichten durch einen weltweit einzigartigen Versuchsaufbau
Mit dem weltweit einmaligen Versuchsaufbau der Forschungspartner an der LMU München um Prof. Dr. Eberhard Riedle konnten die Bayreuther und Münchner Wissenschaftler präzise beobachten, wie Lichtenergie in Strom verwandelt wird. Mit einer Auflösung von 40 Femtosekunden ließen sich alle Abschnitte dieser Transformation bildlich darstellen: zunächst die Anregung der Polymere durch Lichtenergie; dann die Bildung von Coulomb-gebundenen Paaren positiver und negativer Ladung; und schließlich deren Trennung. Eine Femtosekunde ist ein winziger Bruchteil einer Sekunde; z.B. legt Licht in dieser Zeit weniger als ein Millionstel Meter zurück. Mit dem lasertechnologischen Versuchsaufbau in den Münchner Laboratorien konnte gezeigt werden, welcher Prozess sich innerhalb der Solarzelle auf dieser Zeitskala abspielt. Die Forschungspartner in Bayreuth und München wollen diese hochleistungsfähige Apparatur auch in Zukunft einsetzen, um die Grundlagen- und Anwendungsforschung zur Solarenergie weiter voranzutreiben.

Veröffentlichung:

D. Herrmann, S. Niesar, C. Scharsich, A. Köhler, M. Stutzmann, E. Riedle,
The Role of Structural Order and Excess Energy on Ultrafast Free Charge Generation in Hybrid Polythiophene/Si Photovoltaics probed in Real Time by Near-Infrared Broadband Transient Absorption,
in: Journal of the American Chemical Society, 2011 Sept 26
DOI-Bookmark: http://dx.doi.org/10.1021/ja207887q
Ansprechpartner für weitere Informationen:
Prof. Dr. Anna Köhler
Lehrstuhl Experimentalphysik II
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 2600
Fax: +49 (0)921 55 2621
E-Mail: anna.koehler@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://dx.doi.org/10.1021/ja207887q
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Linearpotentiometer LRW2/3 - Höchste Präzision bei vielen Messpunkten
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht Neues 100 kW-Wechselrichtermodul für B6-Standard halbiert Gewicht und Volumen
17.05.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie