Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wechselspiel von elektronischem Magnetismus, Kernspins und Supraleitung

01.02.2016

Nichtklassische Supraleitung hat ein internationales Forscherteam bei extrem tiefen Temperaturen in einer intermetallischen Verbindung aus Ytterbium, Rhodium und Silizium entdeckt. Am Projekt waren Physiker der Technischen Universität München (TUM), des Walther-Meißner Instituts der Bayerischen Akademie der Wissenschaften in Garching, des Max-Planck Instituts für Chemische Physik fester Stoffe in Dresden, der Rice University (Houston, USA) und der Renmin University (Beijing, China) beteiligt.

Supraleiter transportieren Strom völlig ohne Widerstand und sind daher technisch von höchstem Interesse. Während es für die klassische Supraleitung eine physikalische Erklärung gibt, ist bisher nicht klar, wie sie in Hochtemperatur-Supraleitern zustande kommt. Weltweit suchen daher Forscher nach Modellen und Mustern, die dieses Phänomen erklären können und sie dem Fernziel, der Supraleitung bei Raumtemperatur, näher bringen.


Unter dem Mikroskop leuchtet der Anschliff einer Probe der intermetallischen Verbindung aus Ytterbium, Rhodium und Silizium (YbRh2Si2) golden. Eine Einheit auf der eingeblendeten Skala entspricht 0,1

Foto: Marc Tippmann / TUM


Prof. Dr. Erwin Schuberth (TUM) und Dr. Marc Tippmann (TUM) am Hochleistungskryostaten im Walther-Meißner-Institut

Bild: Andreas Battenberg / TUM

Forscher eines internationalen Teams um Erwin Schuberth, Professor an der TU München und am Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften, Professor Frank Steglich, Direktor am Max-Planck-Institut für Chemische Physik Fester Stoffe in Dresden sowie Qimiao Si, Professor an der Rice University in Houston (USA) und Professor Rong Yu von der Renmin University in Peking haben nun einen Mechanismus entdeckt, der in einer Verbindung aus Ytterbium, Rhodium und Silizium bei sehr niedrigen Temperaturen Supraleitung entstehen lässt.

Im Land der „schweren Elektronen“

Im Gegensatz zu Neutronen und Protonen, den Kernbausteinen, sind Elektronen extrem leicht. Sie gehören zur Teilchenklasse der Fermionen. In speziellen Materialien und unter bestimmten Bedingungen verhalten sie sich jedoch, als wären sie Tausend mal schwerer. Die von den Wissenschaftlern untersuchte Verbindung aus Ytterbium, Rhodium und Silizium (YbRh2Si2) ist ein typischer Vertreter dieser „Heavy Fermion“-Systeme genannten Materialien.

„Es gibt bereits überzeugende Beweise, dass die nichtklassische Supraleitung sowohl in kupferbasierten als auch in eisenbasierten Hochtemperatur-Supraleitern in enger Verbindung mit Quantenfluktuationen steht. Diese verändern die magnetische Ordnung der Materialien an ‚quantenkritischen Punkten’, Schwellenwerten am Übergang von einer Quantenphase in eine andere", sagt Qimiao Si. „Diese Arbeit liefert den ersten Beweis, dass ähnliche Prozesse in „Heavy Fermion“-Systemen Supraleitung bewirken."

Ultra-tiefe Temperaturen

In der Arbeitsgruppe von Frank Steglich werden „Heavy-Fermion“-Systeme wie das Ytterbium-Rhodium-Silicid schon seit mehr als 15 Jahren intensiv untersucht. In früheren Untersuchungen wurden Quantenfluktuationen durch ein äußeres Magnetfeld erreicht, das jedoch einen Übergang zur Supraleitung verhinderte.

Für ihre neuen Versuche nutzten die Wissenschaftler einen Kernentmagnetisierungs-Kryostaten des Walther-Meißner-Instituts in Garching. Dieses Gerät kann Proben bis zu einer Temperatur von 400 Millionstel Kelvin hinab kühlen. Bei einer Übergangstemperatur von zwei Millikelvin wurden die Proben plötzlich supraleitend.

Bei Messungen der spezifischen Wärme erkannten die Autoren überrascht, dass die effektive Masse der Ladungsträger ihrer Legierung um einen weiteren Faktor 1000 anzusteigen schien, wenn man das Material zu Temperaturen unterhalb des supraleitenden Übergangs kühlte. „Das zeigt klar, dass im Bereich ultra-tiefer Temperaturen Wechselwirkungen mit den Kernspins der umgebenden Atomkerne am Werk sind “, sagt Erwin Schuberth. „Sie bilden eine magnetische Ordnung aus, die Supraleitung möglich macht.“

Kernspins arrangieren sich neu

Die Messergebnisse wurden von den Theoretikern Qimiao Si und Rong Yu analysiert. Sie fanden, dass ein spezielles Arrangement der Kernspins des Ytterbiums die Voraussetzung für die Supraleitung ist. Nach ihrer Theorie koppeln die Kernspins bei extrem tiefen Temperaturen untereinander und ordnen sich in einer Art und Weise, die mit der antiferromagnetischen elektronischen Ordnung konkurriert und diese entscheidend abschwächt. Auf diese Weise kommen die elektronischen „quantenkritischen“ Fluktuationen zum Tragen, die treibenden Kräfte für die Supraleitung.

„Die Arbeit zeigt, dass das Entstehen nichtklassischer Supraleitung in der Nähe antiferromagnetischer Instabilitäten ein allgemeines Phänomen ist“, sagt Frank Steglich. „Es ist nicht beschränkt auf die Kuprate und organischen Supraleiter sondern tritt auch in den Heavy-Fermion-Materialien auf, Modellsubstanzen für Quantenmaterie mit extrem starken elektronischen Korrelationen.“

Die Forschungsarbeiten wurden unterstützt von der Deutschen Forschungsgemeinschaft (DFG), der Robert A. Welch Foundation und der National Science Foundation (NSF).

Publikation:

Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2
Erwin Schuberth, Marc Tippmann, Lucia Steinke, Stefan Lausberg, Alexander Steppke, Manuel Brando, Cornelius Krellner, Christoph Geibel, Rong Yu, Qimiao Si, Frank Steglich; Science, 29.01.2016 – DOI: 10.1126/science.aaa973

Kontakt:

Prof. Dr. Erwin Schuberth
Technische Universität München
Lehrstuhl für Technische Physik (E23)
Walther-Meißner-Str. 8, 85748 Garching, Germany
E-Mail: eschuber@ph.tum.de

Weitere Informationen:

http://science.sciencemag.org/content/351/6272/485
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32897/

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Meilenstein in der Kreissägetechnologie
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht
07.12.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

11.12.2017 | Verfahrenstechnologie

Jenaer Wissenschaftler für Prostatakrebs-Forschung ausgezeichnet

11.12.2017 | Förderungen Preise

Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt

11.12.2017 | Biowissenschaften Chemie