Wechselspiel von elektronischem Magnetismus, Kernspins und Supraleitung

Unter dem Mikroskop leuchtet der Anschliff einer Probe der intermetallischen Verbindung aus Ytterbium, Rhodium und Silizium (YbRh2Si2) golden. Eine Einheit auf der eingeblendeten Skala entspricht 0,1 Foto: Marc Tippmann / TUM

Supraleiter transportieren Strom völlig ohne Widerstand und sind daher technisch von höchstem Interesse. Während es für die klassische Supraleitung eine physikalische Erklärung gibt, ist bisher nicht klar, wie sie in Hochtemperatur-Supraleitern zustande kommt. Weltweit suchen daher Forscher nach Modellen und Mustern, die dieses Phänomen erklären können und sie dem Fernziel, der Supraleitung bei Raumtemperatur, näher bringen.

Forscher eines internationalen Teams um Erwin Schuberth, Professor an der TU München und am Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften, Professor Frank Steglich, Direktor am Max-Planck-Institut für Chemische Physik Fester Stoffe in Dresden sowie Qimiao Si, Professor an der Rice University in Houston (USA) und Professor Rong Yu von der Renmin University in Peking haben nun einen Mechanismus entdeckt, der in einer Verbindung aus Ytterbium, Rhodium und Silizium bei sehr niedrigen Temperaturen Supraleitung entstehen lässt.

Im Land der „schweren Elektronen“

Im Gegensatz zu Neutronen und Protonen, den Kernbausteinen, sind Elektronen extrem leicht. Sie gehören zur Teilchenklasse der Fermionen. In speziellen Materialien und unter bestimmten Bedingungen verhalten sie sich jedoch, als wären sie Tausend mal schwerer. Die von den Wissenschaftlern untersuchte Verbindung aus Ytterbium, Rhodium und Silizium (YbRh2Si2) ist ein typischer Vertreter dieser „Heavy Fermion“-Systeme genannten Materialien.

„Es gibt bereits überzeugende Beweise, dass die nichtklassische Supraleitung sowohl in kupferbasierten als auch in eisenbasierten Hochtemperatur-Supraleitern in enger Verbindung mit Quantenfluktuationen steht. Diese verändern die magnetische Ordnung der Materialien an ‚quantenkritischen Punkten’, Schwellenwerten am Übergang von einer Quantenphase in eine andere“, sagt Qimiao Si. „Diese Arbeit liefert den ersten Beweis, dass ähnliche Prozesse in „Heavy Fermion“-Systemen Supraleitung bewirken.“

Ultra-tiefe Temperaturen

In der Arbeitsgruppe von Frank Steglich werden „Heavy-Fermion“-Systeme wie das Ytterbium-Rhodium-Silicid schon seit mehr als 15 Jahren intensiv untersucht. In früheren Untersuchungen wurden Quantenfluktuationen durch ein äußeres Magnetfeld erreicht, das jedoch einen Übergang zur Supraleitung verhinderte.

Für ihre neuen Versuche nutzten die Wissenschaftler einen Kernentmagnetisierungs-Kryostaten des Walther-Meißner-Instituts in Garching. Dieses Gerät kann Proben bis zu einer Temperatur von 400 Millionstel Kelvin hinab kühlen. Bei einer Übergangstemperatur von zwei Millikelvin wurden die Proben plötzlich supraleitend.

Bei Messungen der spezifischen Wärme erkannten die Autoren überrascht, dass die effektive Masse der Ladungsträger ihrer Legierung um einen weiteren Faktor 1000 anzusteigen schien, wenn man das Material zu Temperaturen unterhalb des supraleitenden Übergangs kühlte. „Das zeigt klar, dass im Bereich ultra-tiefer Temperaturen Wechselwirkungen mit den Kernspins der umgebenden Atomkerne am Werk sind “, sagt Erwin Schuberth. „Sie bilden eine magnetische Ordnung aus, die Supraleitung möglich macht.“

Kernspins arrangieren sich neu

Die Messergebnisse wurden von den Theoretikern Qimiao Si und Rong Yu analysiert. Sie fanden, dass ein spezielles Arrangement der Kernspins des Ytterbiums die Voraussetzung für die Supraleitung ist. Nach ihrer Theorie koppeln die Kernspins bei extrem tiefen Temperaturen untereinander und ordnen sich in einer Art und Weise, die mit der antiferromagnetischen elektronischen Ordnung konkurriert und diese entscheidend abschwächt. Auf diese Weise kommen die elektronischen „quantenkritischen“ Fluktuationen zum Tragen, die treibenden Kräfte für die Supraleitung.

„Die Arbeit zeigt, dass das Entstehen nichtklassischer Supraleitung in der Nähe antiferromagnetischer Instabilitäten ein allgemeines Phänomen ist“, sagt Frank Steglich. „Es ist nicht beschränkt auf die Kuprate und organischen Supraleiter sondern tritt auch in den Heavy-Fermion-Materialien auf, Modellsubstanzen für Quantenmaterie mit extrem starken elektronischen Korrelationen.“

Die Forschungsarbeiten wurden unterstützt von der Deutschen Forschungsgemeinschaft (DFG), der Robert A. Welch Foundation und der National Science Foundation (NSF).

Publikation:

Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2
Erwin Schuberth, Marc Tippmann, Lucia Steinke, Stefan Lausberg, Alexander Steppke, Manuel Brando, Cornelius Krellner, Christoph Geibel, Rong Yu, Qimiao Si, Frank Steglich; Science, 29.01.2016 – DOI: 10.1126/science.aaa973

Kontakt:

Prof. Dr. Erwin Schuberth
Technische Universität München
Lehrstuhl für Technische Physik (E23)
Walther-Meißner-Str. 8, 85748 Garching, Germany
E-Mail: eschuber@ph.tum.de

http://science.sciencemag.org/content/351/6272/485
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32897/

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer