Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus nasser Biomasse

06.02.2013
Nachhaltig produzierte Energieträger – wie etwa Wasserstoff aus Windkraft – sind ein wichtiger Schritt auf dem Weg zur Treibhausgasreduzierung und damit ein wichtiger Beitrag zum Klimaschutz.

Wasserstoff kann aber nicht nur aus Windkraft, sondern auch auf anderen Wegen nachhaltig produziert werden: Ziel des Forschungsprojekt SusFuelCat ist es, ein Verfahren zu verbessern, mit dem sich aus nasser Biomasse Wasserstoff gewinnen lässt.


In einem horizontalen Rohrreaktor wird Kohlenstoff aus der Verbindung mit einem anderen Element gelöst (carbide-derived carbon, CDC).
Foto: FAU/Georg Pöhlein

Prof. Dr. Bastian Etzold, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), ist maßgeblicher Initiator und Koordinator des Projektes. Die Europäische Union fördert SusFuelCat seit Anfang 2013 über einen Zeitraum von vier Jahren mit 3,5 Millionen Euro.

Den Energieträger Wasserstoff aus Biomasse – oder vereinfacht: kompostierbaren Materialien – zu erzeugen, ist bislang nur unter hohem Energieaufwand möglich. Beispielsweise muss die ursprünglich feuchte Biomasse vor dem Weiterverwerten aufwändig getrocknet werden. Im Rahmen von SusFuelCat setzen die Forscher nun stattdessen den so genannten APR-Prozess ein (Aqueous Phase Reforming – APR): Bei dieser neuen Methode wird die noch feuchte Biomasse mit einem Katalysator in Kontakt gebracht. Die in der Folge ablaufenden chemischen Reaktionen zersetzen das Material und setzen kaum verunreinigten Wasserstoff frei.

Der Vorteil: Das Verfahren verbraucht wenig Energie, da es bei geringen Temperaturen und niedrigem Druck durchgeführt werden kann. Zugleich entfällt die ebenfalls energieintensive Trocknung der Biomasse. Schließlich – und das macht APR besonders effizient – lässt sich in diesem Prozess selbst das Wasser, das Bestandteil der Biomasse ist, noch zersetzen und so zusätzlich Wasserstoff gewinnen – ein Effekt, der nur dank der niedrigen Temperaturen möglich ist. Im Vergleich mit fossilen Energieträgern spart der so erzeugte Wasserstoff aber nicht nur wertvolle Energie ein. Der Atmosphäre bleibt auch Treibhausgas erspart, da bei der Verbrennung lediglich Wasserdampf und kein CO2 entsteht.

Die Schlüsselkomponenten des Verfahrens sind die Katalysatoren. Gelingt es den Forschern, sie zu optimieren, erhöht dies die Nachhaltigkeit des gesamten Verfahrens. Die zurzeit verwendeten Katalysatoren enthalten noch teure Edelmetalle wie etwa Platin und Palladium, die auf keramischen Trägern fein verteilt sind. Das SusFuelCat-Projekt ist darauf ausgerichtet, den Anteil an teuren Edelmetallen entweder zu senken oder sie durch unedle Metalle zu ersetzen, ohne die Vorteile des APR-Prozesses einzubüßen. Als Träger sollen Materialien aus Kohlenstoff, beispielsweise Nanoröhrchen oder Aktivkohlen, zum Einsatz kommen, die eine höhere Langzeitstabilität versprechen und ein umweltfreundliches Recycling der Metalle erleichtern.
Um die Katalysatoren gezielt zu optimieren, nutzen die Forscher eine Kombination aus verschiedenen modernsten Methoden: Auf molekularer Ebene setzen sie Computersimulationen ein. Zugleich können die Katalysatoreigenschaften sehr exakt justiert, sozusagen maßgeschneidert werden. Und neueste Analytik erlaubt dem Forscherteam, während des APR-Prozesses den Erfolg zu kontrollieren, beispielsweise spektroskopisch einen Blick in das Innere des Reaktors zu werfen.

Langzeit-Experimente bei industriellen Partnern sind schließlich ebenfalls ein wichtiger Baustein der Optimierung. Dafür arbeiten in dem Projekt sechs Forschungsinstitutionen, eine international agierende Firma und drei kleine beziehungsweise mittlere Unternehmen (KMU) zusammen. Die Partner stammen aus Deutschland, Finnland, Großbritannien, Italien, den Niederlanden, Russland und Spanien.

„Das Konsortium ist sicher, mit der neuen Entwicklung den Anteil an nachhaltig produzierten Energieträgern in Zukunft zu steigern und so einen entscheidenden Beitrag zur Energiepolitik der Europäischen Union zu leisten“, so Prof. Etzold, Juniorprofessor für Katalytische Materialien am Exzellenzcluster „Engineering of Advanced Materials“ der FAU. „Darüber hinaus sollen die Erkenntnisse dazu dienen, wirtschaftlichere Katalysatoren auch in verwandte Prozessen einführen zu können.“

Die Abkürzung SusFuelCat steht für “Sustainable fuel production by aqueous phase reforming – understanding catalysis and hydrothermal stability of carbon supported noble metals”.

Weitere Informationen:
Prof. Dr. Bastian Etzold
Tel.: 09131/85-27430
bastian.etzold@crt.cbi.uni-erlangen.de

Blandina Mangelkramer | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie