Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wasserstoff aus Sonnenlicht – TU Ilmenau erzielt Durchbruch bei regenerativer Energie

15.09.2015

Die Technische Universität Ilmenau hat bei der Erforschung neuer regenerativer Energien einen aus wissenschaftlicher Sicht spektakulären Durchbruch erzielt. Ein internationales Forscherteam unter der Leitung des Ilmenauer Professors Thomas Hannappel steigerte den Wirkungsgrad der so genannten direkten solaren Wasserspaltung von 12,4 auf 14 Prozent. Mit der Methode, die auf künstlicher Photosynthese beruht, lässt sich der Brennstoff Wasserstoff aus dem Licht der Sonne herstellen – sauber, nachhaltig und kostengünstig. Das spektakuläre Rekordergebnis, veröffentlicht in der führenden Fachzeitschrift „Nature Communications“, könnte die Lösung der Energieprobleme auf der Welt sein.

Weltweit suchen Forscher fieberhaft nach Alternativen zu den zur Neige gehenden herkömmlichen, fossilen Energieträgern. Spätestens seit der ersten Ölkrise Anfang der 70er Jahre wird aber nicht nur nach bezahlbaren Brennstoffen gesucht. Angesichts des Klimawandels, der weitgehend durch die Verbrennung der fossilen Energieträger verursacht wird, suchen Forscher auch nach Brennstoffen, die regenerativ und sauber erzeugt werden können.


Die Rekordzelle für direkte solare Wasserstofferzeugung. Die Effizienz liegt mit 14% deutlich über dem bisherigen, 17 Jahre alten Bestwert.

Foto: TU Ilmenau/HZB


Professor Thomas Hannappel

Foto: TU Ilmenau

Den ultimativen Energieträger sehen viele in Wasserstoff: Er weist eine hohe Energiedichte auf und bei seiner Verbrennung entsteht als Abfallprodukt nur reines Wasser. Derzeit wird das Gas aber ganz überwiegend durch Dampfreformierung von Methan erzeugt, eine alles andere als umweltfreundliche und nachhaltige Methode. Nahezu ohne schädliche Abfallprodukte lässt sich Wasserstoff hingegen mit der Methode der direkten solaren Wasserspaltung herstellen.

Bei der so genannten künstlichen Photosynthese ist es Sonnenenergie, die die Photolyse von Wasser antreibt. So wird die Energie des Sonnenlichts direkt in Wasserstoff umgewandelt, der anschließend wieder zum Ausgangsprodukt Wasser umgesetzt werden kann – ein Kreislauf, der eine saubere und ökologisch nachhaltige Energiewirtschaft ermöglichen könnte.

Im Energiemix der Zukunft haben solche solaren Brennstoffe ein ungeheures Potenzial: Noch 2014 lag in Deutschland, dem in der Welt „Energiewendeland Nr. 1“, der Anteil der erneuerbaren Brennstoffe an der gesamten Energieproduktion bei nicht mehr als 11 Prozent. Wissenschaftler der Elektrochemie sehen die Methode, Brennstoffe aus Licht zu erzeugen, daher als heiligen Gral zur endgültigen Lösung aller Energieprobleme.

Die Herstellung von „Sonnen-Wasserstoff“ auf industrieller Ebene scheitert aber bisher an den Kosten. Um den Produktionsaufwand finanziell zu rechtfertigen, ist der Wirkungsgrad der künstlichen Photosynthese, also der Energiegehalt des erzeugten Wasserstoffs bezogen auf den des zugeführten Sonnenlichts, einfach zu gering. Bisher lag die maximale jemals erreichte Effizienz bei 12,4 Prozent, ein Ergebnis, das vor 17 Jahren vom National Renewable Energy Laboratory in den USA erzielt wurde.

Schätzt man einen wirtschaftlichen Einsatz der solaren Wasserspaltung im Vergleich mit fossilen Brennstoffen ab, so könnte man ab einer Effizienz von etwa 15 Prozent wirtschaftlich konkurrenzfähig werden. Seit Jahren forschen daher die wichtigsten Wissenschaftsstandorte der Welt mit viel Geld und Engagement daran, die bestehende Bestmarke für künstliche Photosynthese von 12,4 Prozent zu steigern.

Die Effizienzsteigerung auf 14 Prozent, hervorgegangen aus der Doktorarbeit von Matthias May, wurde soeben in „Nature Communications“ veröffentlicht *). Die Annahme der Publikation des Fachgebiets Photovoltaik an der TU Ilmenau um Prof. Thomas Hannappel, des Instituts für Solare Brennstoffe am Helmholtz-Zentrum Berlin, des Fraunhofer-Instituts für Solare Energiesysteme ISE und des California Institute of Technology in dem renommierten Wissenschaftsmagazin verdeutlicht die wissenschaftliche Bedeutung der Forschungsarbeiten.

Nun gilt es, die Serienproduktion von Hochleistungs-Halbleiterbauelementen kostengünstig zu machen. Prof. Hannappel sieht die Lösung in der Verwendung von Silizium: „Dieses ausgereifte Material eignet sich hervorragend als Basissubstanz für hocheffiziente, kostengünstige Bauelemente. Es ist fast unbegrenzt verfügbar und besitzt nahezu ideale physikalisch-chemische Eigenschaften.“ Allerdings kommen bei der Verwendung von Silizium in den Bauelementen Materialgruppen zusammen, die verschiedenen Halbleiterfamilien angehören. Bei einer ungenauen Zusammenführung dieser Materialien sind die Leistungseinbußen enorm.

Die Übergänge von einem Material zum anderen, die so genannten Grenzflächen, sind bei der Herstellung von Bauelementen häufig der kritische Punkt, ihre Wechselwirkungen stellen die Wissenschaft seit jeher vor Probleme. Schon 1945 klagte der österreichische Nobelpreisträger für Physik Wolfgang Pauli: „Gott erschuf das Volumen, der Teufel die Grenzflächen“. Trotzdem ist Hannappel sich sicher, diese Aufgabe von höchster Schwierigkeit bewältigen zu können: „Unser Zugang ist besonders, ja weltweit einmalig. Unsere Leistung besteht darin, an den entscheidenden Stellen ganz genau hinschauen zu können. In diesem Fall hieß es, die Oberflächen von Halbleitern gezielt zu manipulieren.“

Mit modernster experimenteller Ausstattung hat sich die TU Ilmenau in den letzten Jahrzehnten eine einzigartige Expertise bei der Erforschung regenerativ erzeugter Energie aufgebaut, für die Hannappel und sein Team übrigens jüngst Lob und Ermunterung aus kompetentem Munde erhielten. Der heute 87-jährige emeritierte Thüringer Professor und Nobelpreisträger für Physik Herbert Krömer schrieb aus dem US-amerikanischen Santa Barbara, er sei fasziniert, dass es der Gruppe gelungen sei, die Eigenschaften der Grenzfläche zwischen Silizium und den III-V-Halbleitern zu kontrollieren.

Die so erzielte Steigerung der Effizienz der künstlichen Photosynthese ist nicht die erste Weltrekord-Bestmarke des Forscherteams um Professor Hannappel. Erst im letzten Jahr waren die Ilmenauer Wissenschaftler an der deutsch-französischen Entwicklung einer so genannten Vierfach-Stapelsolarzelle mit einem Wirkungsgrad von etwa 45 Prozent entscheidend beteiligt.

Keine Solarzelle weltweit kann Sonnenenergie effizienter in Strom umwandeln. Solche Wirkungsgrade sind allerdings mit solarer Wasserspaltung nicht einmal theoretisch erreichbar. Hier ist das internationale Team schon sehr weit gekommen.

*) May, M. M. et al. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6:8286 doi: 10.1038/ncomms9286 (2015)

Kontakt:
Prof. Thomas Hannappel
Leiter Fachgebiet Photovoltaik
Tel.: 03677 69-2566
E-Mail: thomas.hannappel@tu-ilmenau.de

Bettina Wegner | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-ilmenau.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten