Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Auge abgeschaut: Mikrotrichter aus Silizium erhöhen die Effizienz von Solarzellen

25.02.2015

Eine Biostruktur im Säugetierauge hat ein Team um Silke Christiansen inspiriert, ein anorganisches Pendant für den Einsatz in Solarzellen zu entwerfen. Mit Hilfe etablierter halbleitertechnologischer Verfahren ätzten sie dicht an dicht mikrometerfeine, vertikale Trichter in ein Siliziumsubstrat.

Mit Modellrechnungen und im Experiment testeten sie, wie solche Trichterfelder das einfallende Licht sammeln und in die aktive Schicht einer Siliziumsolarzelle leiten. Durch diese Trichteranordnung steigt die Lichtabsorption in einer damit versehenen Dünnschichtsiliziumsolarzelle um 65 %, was sich in deutlich verbesserten Solarzellparametern u.a. einem erhöhten Wirkungsgrad widerspiegelt.


Aufnahmen mit dem Raster-Elektronenmikroskop zeigen, wie regelmäßig die in ein Silizium-Substrat eingeätzten Trichter angeordnet sind (links: Längenskala 5 Mikrometer, rechts: 1 Mikrometer). Die Trichter messen oben im Durchmesser noch rund 800 Nanometer und laufen unten auf etwa hundert Nanometer spitz zu. Bild: S. Schmitt/MPL


Die Simulation zeigt, wie sich die Form der Nanostrukturen auf die Lichtkonzentration auswirkt. Je spitzer der Trichter zuläuft, desto stärker ist auch das Licht konzentriert (rot: hohe Konzentration, gelb: geringe Intensität). Bild: G. Shalev, S. Schmitt/MPL

Mitten im Gelben Fleck der Netzhaut sitzt die Fovea Centralis, die Sehgrube, in der die trichterartigen, schlanken Farb-Sehzapfen ganz besonders dicht gepackt sind. Weil sie überdies eins zu eins mit Nervenzellen verschaltet sind, sehen wir in diesem kleinen Bereich ein maximal scharfes Bild.

Diese dichtgepackte Zapfen-Struktur hat nun das Team um Prof. Dr. Silke Christiansen dazu angeregt, eine ähnliche Struktur in Silizium nachzubilden und ihre Eignung als lichtsammelnde und -leitende Oberfläche für Solarzellen zu untersuchen. Christiansen leitet das Institut für Nanoarchitekturen für die Energiewandlung am Helmholtz-Zentrum Berlin (HZB) und eine Arbeitsgruppe am Max-Planck Institut für die Physik des Lichts (MPL).

„Wir haben in dieser Arbeit gezeigt, dass die Lichttrichter deutlich mehr Licht absorbieren als andere optische Architekturen, die in letzter Zeit getestet wurden“, sagt Sebastian Schmitt, einer der beiden Erstautoren der Veröffentlichung, die im renommierten Journal Nature Scientific Reports erschienen ist.

Kleine Änderung – große Wirkung!

Wie groß die Auswirkung dieser Architektur war, überraschte die Forscherinnen und Forscher allerdings: So war aus früheren Untersuchungen bekannt, dass auch eine Architektur aus sehr dünnen Säulen (ein „Teppich aus Silizium-Nanosäulen“) Licht gut absorbiert. Doch schon geringe Abweichungen von der Säulenform hin zum Trichter verstärkten die Absorption. Im Vergleich mit den Nanosäulen-Teppichen, die seit längerem untersucht werden, schneiden die Trichterfelder nochmals deutlich besser ab.

Dabei erfordert die Herstellung der Lichttrichter keinen besonderen Aufwand und ist mit herkömmlichen halbleitertechnologischen Verfahren wie z.B. dem reaktiven Ionenätzen oder nasschemischen Ätzprozessen machbar. Verglichen mit einem Silizium-Film gleicher Dicke steigert eine Schicht aus Lichttrichtern die Absorption von Sonnenlicht um 65%.

„Durch unsere Modellierungen können wir auch eine Erklärung liefern, warum die Felder aus Lichttrichtern erheblich besser Licht einfangen als Teppiche aus Nanosäulen (siehe diese Publikation). Optische Moden in Nanosäulen „stören“ sich gegenseitig, ein Feld von eng stehenden Nanosäulen nimmt dadurch also weniger effizient Licht auf, als dieselbe Zahl einzelner Nanosäulen es könnte. Bei den Lichttrichtern tritt das Gegenteil ein: Dicht benachbarte Lichttrichter verstärken ihre Absorption gegenseitig“, erklärt Schmitt.

Blick in die Zukunft:

„Mit diesem interessanten ersten Ergebnis planen wir in verschiedenste Richtungen vorzudringen“, sagt Silke Christiansen. Sie und ihr Team arbeiten weiter an der Verbesserung von Dünnschichtsolarzellen auf Siliziumbasis und wollen die Trichter nun in robuste Zellkonzepte einbauen, die sich auch großflächig und kostengünstig realisieren lassen. Dabei können sie auf die Kompetenzen am PVCOMB des HZB zugreifen, wo die Abteilung um Prof. Rutger Schlatmann sich auf Hoch-Skalierung von Labormustern spezialisiert hat und Machbarkeitsstudien für großflächige Solarzellen schnell und effizient umsetzen kann. „In dieser Kooperation werden wir hoffentlich zeitnah mit einer 30cm x 30cm Trichtersolarzelle wieder von uns hören lassen. Sebastian Schmitt arbeitet aber auch an der Nutzung der Trichter für weitere photonische Anwendungen in LEDs und sensorischen Bauelementen. Erste Vorversuche sind so vielversprechend, dass wir zuversichtlich sind, dass diese Anwendungen kein Traum bleiben müssen“, so Silke Christiansen.

Die Arbeit erschien in February 24th in Nature Scientific Reports: Enhanced photovoltaics inspired by the fovea centralis, Gil Shalev, Sebastian W. Schmitt et al. Teamleader: Silke Christiansen, Scientific Reports 5, Article number:8570, doi:10.1038/srep08570


Weitere Informationen:
Prof. Dr. Silke Christiansen
silke.christiansen@helmholtz-berlin.de

HZB-Pressestelle
Dr. Antonia Rötger
antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14152&sprache=de&ty...
http://www.nature.com/srep/2015/150224/srep08570/full/srep08570.html

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Power-to-Liquid: 200 Liter Sprit aus Solarstrom und dem Kohlenstoffdioxid der Umgebungsluft
24.07.2017 | Karlsruher Institut für Technologie

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie