Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viel Energie aus Offshore-Anlagen kommt wirklich an?

30.09.2010
Europäisches Kooperationsprojekt entwickelt die Messtechnik für die Energieübertragung mittels Gleichstrom - Gemeinsame Presseinformation mit der Technischen Universität (TU) Braunschweig

Windkraft dort nutzen, wo der Wind am stärksten bläst – eine faszinierende Idee. Die ersten Offshore-Anlagen entstehen bereits, viele weitere sind geplant. Doch je weiter sie von der Küste entfernt liegen, desto drängender wird das Problem der möglichst verlustarmen Übertragung des Stromes.

Auf weite Strecken geht das nur mit Gleichstrom. Um die unvermeidlichen Verluste auch hier genau zu erfassen und um für ein zukünftiges Netz von Gleichstrom-Übertragungswegen eine messtechnische Infrastruktur aufzubauen, ist jetzt ein europäisches Kooperationsprojekt gestartet, an dem eine Vielzahl von Metrologie-Instituten beteiligt ist.

Der Startschuss dafür kam aus Braunschweig, von einer engen Kooperation der Technischen Universität (TU) und der Physikalisch-Technischen Bundesanstalt (PTB), die beide jetzt intensiv an dem neuen Projekt beteiligt sind.

Schon jetzt werden die Netze eng. Das europäische Hochspannungs-Verbundnetz ist völlig ausgelastet. Weitere Energieerzeuger, etwa Wind-, Wasser- oder Sonnenkraftwerke, lassen sich kaum noch anschließen; neue Wege für den Strom müssen her. Weil Hochspannungsleitungen oftmals am Protest der Anwohner scheitern und bei Offshore-Anlagen sowieso nicht in Frage kommen, müssen unterirdische Kabel her. Geplant ist nichts weniger als ein neues Übertragungsnetz über ganz Europa. Will man Strom über Kabel und so weite Strecken übertragen, dann geht das nur mit Gleichstrom, denn dabei sind die Verluste geringer.

Aber die bisherigen Netze funktionieren mit Wechselstrom. Das ist so, seit Ende des 19. Jahrhunderts die Entscheidung für die großflächige Verteilung von Strom gegen den Gleichstrom gefallen war. Denn damals gab es nur für Wechselstrom einfache und wirkungsvolle Möglichkeiten, ihn mit hoher Spannung und damit ohne große Verluste zu übertragen. Längst ist das nicht mehr so. Und seit die Halbleiter-Elektronik neue Hochleistungs-Schalter entwickelt hat, die es ermöglichen, auch hohe Leistungen effizient von Gleich- auf Wechselstrom und zurück umzuformen, steht dem neuen Gleichstromnetz im Prinzip nichts mehr im Wege.

Bereits jetzt gibt es regenerative Energieerzeugungsanlagen, die ihren Strom per Gleichstromkabel liefern. Bei der Einspeisung ins Hochspannungs-Verbundnetz muss er in Wechselstrom transformiert werden. „Wie hoch die Transportverluste dabei sind, kann man bisher nur beim Wechselstrom messen – der ganze Bereich des Gleichstromes ist für uns noch eine ‚Black Box’“, erklärt Wolfgang Lucas, der bei der PTB für das Projekt verantwortlich ist.

Denn genormte Messtechnik existiert bisher nur für Wechselstrom. Es wird Zeit, die gesamte messtechnische Infrastruktur auch auf die Gleichstromtechnik auszuweiten. Diese Infrastruktur hat eine wissenschaftliche Seite, etwa die Entwicklung von immer besseren Messgeräten. Und es gibt eine bürokratische Seite, nämlich ein gut funktionierendes System der Überprüfung dieser Messgeräte. Die PTB ist in Deutschland die oberste Instanz für die Bauartprüfung etwa von Elektrizitätszählern; bisher nur für Wechselstrom. „Aber wir sind schon gut für die Gleichstromtechnik gerüstet“, betont Lucas.

Die Technische Universität Braunschweig hat im Projekt die Aufgabe, die Verluste der Hochleistungsschalter in den Konvertern der Hochspannungs-Gleichstrom-Stationen näher zu untersuchen und zu verringern. Der Projektverantwortliche Michael Kurrat betont: „Der Startschuss kam aus Braunschweig, aus der außerordentlich gut funktionierenden Zusammenarbeit zwischen TU und PTB gerade auf diesem Gebiet.“

Die weiteren Beteiligten des Projektes sind die metrologischen Staatsinstitute von Schweden (wo auch die Projektleitung liegt), den Niederlanden, der Türkei, Italien, Großbritannien und Finnland. Es wird finanziert im Rahmen des Europäischen Metrologie-Forschungsprogrammes (European Metrology Research Programme, EMRP), mit dem die europäischen Metrologie-Institute ihre Forschung koordinieren, ist am 1. September offiziell gestartet und soll zunächst drei Jahre lang laufen. Die Teilnehmer erwarten entscheidende Anstöße für das europäische Hochspannungs-Gleichstrom-Netz, wie es für Projekte wie „Desertec“ benötigt wird. Andere Bereiche, in denen Gleichstrom eine Rolle spielt, etwa für Photovoltaikanlagen oder Elektroautos, werden ebenfalls davon profitieren.

ptb/es

Ansprechpartner:
Dr.-Ing. Wolfgang Lucas, PTB-Arbeitsgruppe 2.32 Hochspannung und Traktionsenergiemesstechnik, Tel. (0531) 592-2380, E-Mail: wolfgang.lucas@ptb.de
Prof. Dr.-Ing. Michael Kurrat, Institut für Hochspannungstechnik und Elektrische Energieanlagen, Technische Universität (TU) Braunschweig, Tel. (0531) 391-7735,

E-Mail: m.kurrat@tu-braunschweig.de

Erika Schow | idw
Weitere Informationen:
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise