Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verwertung von bisher ungenutztem Ökostrom

08.03.2013
Eine hochdynamische Technologie von Siemens soll bisher ungenutzten Wind- oder Solarstrom in Wasserstoff umwandeln und eine Speicherung ermöglichen.

Die Elektrolyse reagiert innerhalb von Millisekunden auf das schwankende Angebot erneuerbarer Energiequellen und ist damit schneller als bisherige Verfahren. Der Prototyp einer Anlage mit der so genannten PEM-Technik produziert pro Stunde zwischen zwei und sechs Kilogramm Wasserstoff.



Ein solcher Container mit 0,3 Megawatt Spitzenleistung wurde nun im Rahmen des Projekts CO2RRECT (CO2-Reaction using Regenerative Energies and Catalytic Technologies) bei RWE im Innovationszentrum Kohle am Kraftwerksstandort Niederaußem in Betrieb genommen.

Hier werden jetzt Betriebssituationen simuliert, wie sie durch fluktuierende Stromeinspeisung entstehen können. Die Partner des Projekts, zu denen neben Siemens, RWE und Bayer auch zehn akademische Institute gehören, wollen elektrolytisch gewonnenen Wasserstoff einsetzen, um Kohlendioxid zu einem Rohstoff für die chemische Produktion umzuwandeln.

Energiespeicher für Strom aus erneuerbaren Energiequellen sind ein wichtiger Baustein der Energiewende. Verdichtetes Wasserstoffgas hat eine hohe Energiedichte und könnte zum Beispiel in unterirdischen Salzstöcken (Kavernen) gelagert werden. Bei Bedarf lässt sich Wasserstoff in Strom verwandeln, außerdem kann er als Kraftstoff dienen oder als Rohstoff für die Industrie.

Bisher waren Elektrolyseanlagen allerdings nicht dafür konzipiert, flexibel auf das stark schwankende Angebot an elektrischer Leistung zu reagieren. Im Siemens-Sektor Industry wurde eine neue wartungsarme Elektrolysetechnik entwickelt, die Grundlagen dazu stammen aus der Forschung Corporate Technology.

In dem Elektrolyseur trennt eine protonenleitende Membran (PEM-Membran) die Elektroden, an denen Wasserstoff und Sauerstoff entstehen. Dieser Elektrolyseur reagiert unter anderem deshalb so schnell, weil die Membran sehr stabil gegenüber Druckdifferenzen in beiden Gasräumen ist. Aufgrund innerer Kühlung und der Auslegung für hohe Stromdichten verkraftet er problemlos für einige Zeit das Dreifache seiner Nennleistung, verbraucht im Stand-by-Modus allerdings kaum Energie.

Kleinere Anlagen könnten bald an Tankstellen Wasserstoff für Brennstoffzellenfahrzeuge produzieren. Modulare Systeme mit bis zu zehn Megawatt sollen in wenigen Jahren zur Verfügung stehen, z.B. für Industrieanlagen. Längerfristig sollen mit der PEM-Elektrolyse auch Systeme im dreistelligen Megawatt-Bereich ermöglicht werden, um die Leistung von Off-Shore-Windparks aufzunehmen oder auch als Ausgleichslast für Primär- oder Sekundärregelenergie. Hierfür entwickelt Siemens das Design, Material und Fertigungsprozesse der PEM-Elektrolyse weiter. (IN 2013.03.1)

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Weitere Informationen:
http://www.siemens.de/innovation

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics