Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UV-transparente Schicht für Bildsensoren

01.02.2011
Bildsensoren, wie sie in Handys verbaut werden, sind in manchen Bereichen farbenblind. Das liegt an der Schicht, die UV-Licht nicht durchlässt.

Daher eignen sich diese CMOS-Chips bislang nicht für die Spektroskopie. Ein neuer Fertigungsprozess macht die Schicht transparent – und die Sensoren für Spezialanwendungen tauglich.


CMOS-Bildsensoren erhalten künftig eine transparente Schutzschicht, die für Licht im UV- und blauen Spektralbereich durchlässig ist. (© Fraunhofer IMS)

In der Unterhaltungselektronik sind sie längst Standard – und ihr Vormarsch in weitere Anwendungsbereiche ist nicht mehr zu stoppen: CMOS-Bildsensoren werden nicht mehr nur in Handy- und Digitalkameras verbaut. Die Automobilindustrie etwa hat das Potenzial der optischen Halbleiterchips entdeckt und setzt sie zunehmend als Fahrerassistenzsysteme ein; von der Einparkhilfe über die Fahrspurerkennung bis hin zum Totwinkel-Warner. Doch die Sensoren, die Lichtsignale in elektrische Impulse verwandeln, müssen bei Spezialanwendungen jede Menge aushalten können – beispielsweise hohe Umgebungstemperaturen oder Feuchtigkeit.

Deshalb sind CMOS-Bauelemente mit einer Siliziumnitrid-Schicht abgedeckt. Diese chemische Verbindung bildet harte Schichten, die den Sensor vor mechanischen Einflüssen und dem Eindringen von Feuchtigkeit und Ionen schützen. Die Schutzschicht erhält der Sensor im letzten Schritt des CMOS-Halbleiterverfahrens. Experten nennen das Passivierung. Diese ist seitens der Industrie vorgeschrieben. Doch bisher gibt es mit der Passivierung ein Problem: Die Siliziumnitrid-Schicht setzt den optischen Anwendungsbereichen Grenzen, denn sie ist für Licht im UV- und blauen Spektralbereich nicht durchlässig – CMOS-Sensoren für Industrie- oder Spezialkameras sind deshalb teilweise farbenblind.

Forscher des Fraunhofer-Instituts für Mikroelektronische Schaltungen und Systeme IMS in Duisburg haben für dieses Problem jetzt eine Lösung gefunden: »Wir haben einen neuen Prozessschritt entwickelt«, sagt Werner Brockherde, Abteilungsleiter am IMS. »Mit diesem kommen wir zu einer Schutzschicht, die für blaues und UV-Licht durchlässig ist, aber dennoch die gleichen Eigenschaften besitzt.« Letztendlich besteht der Trick darin, den Stickstoffanteil in der Schicht zu erhöhen. »Dadurch haben wir die sogenannte Bandlücke erhöht«, erklärt Brockherde. Das führt vereinfacht gesagt dazu, dass das Licht eine höhere Energie als die des UV-Lichts benötigt, um vom Material absorbiert zu werden – der Sensor ist somit für den blauen und den UV-Bereich transparent geworden. »Die CMOS-Bildsensoren sind dadurch auch in Wellenlängenbereichen bis hinunter zu 200 Nanometer einsetzbar«, sagt Brockherde. »Mit der Standard-Passivierung war bei etwa 450 Nanometer Schluss.« Um die Struktur des Siliziumnitrids zu verändern, mussten die Fraunhofer-Forscher die Abscheideparameter wie Druck oder Temperatur bei der Herstellung der Schicht optimal anpassen.

Dank dieser Prozessentwicklung haben die Experten das Anwendungsspektrum der CMOS-Bildtechnologie erweitert: Sie könnte vor allem UV-spektroskopische Methoden, die aus kaum einem Labor der Welt wegzudenken sind, revolutionieren und deren Genauigkeit deutlich verbessern. Ebenso können CMOS-Bildsensoren künftig in der professionellen Mikroskopie wie etwa in Fluoreszenzmikroskopen zum Einsatz kommen – und Wissenschaftlern auf diese Weise noch detailreichere Bilder liefern.

Werner Brockherde | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/14/uv-transparente-schicht-fuer-bildsensoren.jsp

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie