Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unbemannte Roboter retten Leben im Katastrophenfall

14.06.2012
EU fördert Projekt zur Rettung von Menschenleben

Das Erdbeben und der Tsunami in Japan vor rund einem Jahr versetzten das halbe Land binnen kürzester Zeit in ein einziges Chaos. Nach solchen Katastrophen fällt die Koordination in Krisengebieten oft schwer und die Suche nach Überlebenden gestaltet sich im unwegsamen Gelände häufig besonders schwierig und mitunter für die Rettungsmannschaften sogar lebensgefährlich.


Erdbebenszenario
ESRI Portugal


Seeszenario
INESC

Auch dauert es in vielen Fällen immer noch zu lange, bis geschulte Rettungskräfte und Suchtrupps vor Ort sind. Bei der Bergung und Rettung möglicher Überlebender zählen jedoch Sekunden.

Ortswechsel: Spätestens seit dem Unglück der Costa Concordia vor der italienischen Insel Giglio Anfang des Jahres ist die Angst vor einem Schiffbruch auf hoher See wieder näher in das Bewusstsein der Menschen gerückt. Um im Falle solcher und ähnlicher Katastrophen wenigstens die Zahl der Opfer so gering wie möglich zu halten und eine bestmögliche Suche nach Überlebenden und deren Bergung sowohl im Wasser als auch an Land zu ermöglichen, wurde das EU-Projekt ICARUS (Integrated Components for Assisted Rescue and Unmanned Search Operations) ins Leben gerufen.
Das im Februar 2012 gestartete Projekt wird durch die EU gefördert und hat ein Gesamtvolumen von 17,5 Millionen Euro. ICARUS hat das Ziel, die Einsatzkräfte vor Ort mit unbemannten Robotern oder Fahrzeugen zu unterstützen, die sowohl im Gelände als auch in der Luft und auf dem Wasser eingesetzt werden können. Innerhalb der nächsten vier Jahre sollen verschiedene Systeme integriert werden, die mittels optimierter Wärmebildsensoren, Videoverarbeitung und Datenkombination dazu beitragen, die Rettungs- und Suchoperationen in Zukunft zu verbessern.

Neben der Arbeitsgruppe Interconnection Metallurgy and Processes (IMP) des Fraunhofer IZM besteht das Projektkonsortium aus 24 Institutionen aus 10 Ländern. In enger Kooperation mit der Université de Neuchâtel sowie der TU Wien entwickelt das Fraunhofer IZM ein besonders leichtes Wärmebild-Kamerasystem mit möglichst kleinen Abmessungen und niedrigem Stromverbrauch. In diesem System kommen zwei Kameras zum Einsatz, deren Bilddaten durch Fusions-Algorithmen (entwickelt durch die Projektpartner der RMA Belgien und der ETH Zürich) ausgewertet werden. Durch die Kombination aus neuentwickeltem Kamerasystem und Algorithmen wird es möglich, Körper menschlicher Überlebender sowohl zwischen Häusertrümmern und Schutt als auch an der Wasseroberfläche mit hoher Erkennungswahrscheinlichkeit auszumachen.

Während die erste Kamera einen kommerziell verfügbaren mikrobolometrischen Sensor enthält, gilt es für ICARUS eine zweite Kamera von Grund auf neu zu entwickeln. Mikrobolometrische Kameras können zwar hochaufgelöste Videobilder liefern, enthalten jedoch keinerlei spektrale Information. Aus diesem Grund wird das Kamerasystem durch die zweite Kamera ergänzt, die auf hochempfindlichen Quantenkaskaden-Detektoren (QCDs) der Université de Neuchâtel basiert. Diese Entwicklung soll es ermöglichen, Menschen zuverlässig von anderen Gegenständen zu unterscheiden, die ebenfalls thermische Strahlung emittieren. Das Design der zugrundeliegenden Halbleiterstrukturen wird auf eine Wellenlänge von 9,5 Mikrometern optimiert, was der Haupt-Abstrahlwellenlänge bei menschlicher Körpertemperatur entspricht. Durch die Integration beider Kameras, die sich in ihren Auflösungseigenschaften und Technologien ergänzen, wird so ein leistungsfähiges System geschaffen.
Die elektronikfeindliche Umgebung (wie z.B. große Hitze oder Kälte, Luftfeuchtigkeit oder Nässe) im Einsatzgebiet stellt eine besondere Herausforderung dar, die die Aufbau- und Verbindungstechnik stark belastet. Im Einsatz auf unbemannten Plattformen wie Drohnen, Gelände- und Wasserfahrzeugen werden die Kamerasysteme außerdem extremen mechanischen Belastungen ausgesetzt. Um diesen Anforderungen gerecht zu werden, entwickelt das Fraunhofer IZM eine geeignete Integrations- und Packaging-Technologie, die die hohen Anforderungen an die Zuverlässigkeit der Kontaktierung der einzelnen Komponenten untereinander und zu der „Peripherie“ der QCD-Kamera erfüllen muss.

Eine weitere Herausforderung des QCD-Kamerasystems ist die Kühlung, die von den verwendeten Sensoren benötigt wird. Die Betriebstemperatur liegt bei bis zu -50°C und muss auch im gesamten Bereich der vorgesehen Umgebungstemperatur (-20 bis +50°C) stabil gehalten werden, um die Funktion der Sensoren sicherzustellen. Um dies zu gewährleisten, kommt ein mehrstufiger Peltier-Kühler für die erforderliche Temperaturregulierung zum Einsatz. Zur Vermeidung von Kondensationen auf der Sensoroberfläche wird das Sensorpackage in einem evakuierten hermetisch dichten Gehäuse montiert werden.

Damit trotz des benötigten Gehäuses möglichst kleine Abmessungen erzielt werden können, werden vom Fraunhofer IZM von der TU Wien gedünnte Sensorchips mittels Stud-Bump-Flipchip-Bonding mit einem CMOS-Ausleseelektronik-Chip verbunden. Da der angestrebte Pixel-Abstand und damit der Abstand der zugehörigen elektrischen Kontakte im Bereich von 50 bis 120 Mikrometer liegt, ist es notwendig, eine sehr hohe Platziergenauigkeit zu erreichen. Zudem soll das zu entwickelnde Package für die kommerzielle Produktion mit einer hohen Ausbeute fertigbar sein.

Auf der Internetseite http://fp7-icarus.eu wird es mit Fortschreiten des Projekts weitere Informationen für interessierte Anwender geben. Zurzeit ist dort ein Fragebogen zu finden, der von potenziellen Anwendern wie Katastrophenschutz und anderen Hilfsorganisationen ausgefüllt werden kann, um deren Bedürfnisse und Erfahrungen in das Projekt mit einfließen zu lassen.

Georg Weigelt | Fraunhofer-Institut
Weitere Informationen:
http://fp7-icarus.eu
http://www2.izm.fraunhofer.de/Bilder/Bildmaterial_ICARUS.zip

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics