Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Theorie trifft Experiment: Grundlegendes zu Brennstoffzellen und Batterien der Zukunft

23.11.2012
Brennstoffzellen, die Wasser- und Sauerstoff in Energie umwandeln, gelten als umweltfreundliche „Kraftwerke“ der Zukunft.

Damit die Energiewandler künftig möglichst effizient Elektroautos oder etwa Smartphones antreiben können, wird intensiv in diesem Bereich geforscht – vor allem zu „sauren“ Brennstoffzellen.

Wissenschaftler um Professor Wolfgang Schmickler und Dr. Elizabeth Santos vom Ulmer Institut für Theoretische Chemie haben sich in den letzten zwei Jahren vor allem mit „alkalischen Brennstoffzellen“ beschäftigt.

Im Gegensatz zu ihrem sauren Pendant, bei dem Platin der beste Katalysator ist, reicht im alkalischen Medium zum Beispiel Gold aus, um den elektrochemischen Prozess in Gang zu setzen. „Das Einzige, was fehlt, ist eine leistungsfähige Membran. Sobald diese gefunden ist – und dazu gibt es sehr vielversprechende Ansätze - wird sich die alkalische Brennstoffzelle durchsetzen“, mutmaßen Santos und Schmickler. Sie sei billiger, effektiver, und lebe länger.
Grundsätzliche, theoretische Überlegungen zu alkalischen und sauren Zellen haben die Ulmer Wissenschaftler jetzt in der Fachzeitschrift „Angewandte Chemie International“ veröffentlicht. Dabei liegt ein Schwerpunkt auf der Sauerstoffreduktion, Dieser Schritt läuft in vielen aktuellen Brennstoffzellen zu langsam und somit ineffizient ab.

Bei der Brennstoffzelle sind zwei Elektroden über einen äußeren Stromkreis verbunden und mit einer dünnen Schicht überzogen, die als Katalysator elektrochemische Prozesse antreibt. Aus Wasserstoff und Sauerstoff, die den Elektroden zugeführt werden, entstehen letztlich Energie und Wasser. Beide Elektroden trennt eine für Ionen durchlässige Membran, die verhindert, dass sich Wasserstoff und Sauerstoff mischen, bevor sie reagieren.

Warum aber ist ein verhältnismäßig billiger Katalysator wie Gold im alkalischen Milieu ausreichend? Und wieso kann er nicht im sauren Milieu funktionieren? Das sind Fragen, die Santos und Schmickler mithilfe der von ihnen entwickelten „Theorie der Elektrokatalyse“ beantwortet haben. Um die Geschwindigkeit von Reaktionen in Lösungen nachzuvollziehen, haben sie umfangreiche quantenstatistische Berechnungen mit der „Density Functional-Theory“ kombiniert. Dabei handelt es sich um ein Programm zur Berechnung chemischer Eigenschaften.

Mit interessanten Ergebnissen: „Im alkalischen Milieu ist der erste Reaktionsschritt thermodynamisch günstig. Man braucht gar keinen Katalysator, die Sauerstoffreduktion läuft wenige Ångström von der Elektrode entfernt von alleine ab. Im Sauren hingegen ist sie nur effizient, wenn ein guter Katalysator dafür sorgt, dass der Sauerstoff im Vorfeld adsorbiert wird“, erklären die Wissenschaftler. Andernfalls sei der erste Schritt energetisch zu ungünstig.

Diese Erkenntnisse können auch auf neuartige Lithium-Luft-Batterien übertragen werden. Da das Potential von Lithium-Ionen-Batterien als weitgehend ausgereizt gilt, steht diesen Batterien mit einer theoretisch viel höheren Energiedichte wohl eine große Zukunft bevor. „Unsere theoretischen Überlegungen könnten experimentell arbeitenden Kollegen wichtige Hinweise zur Konstruktion effektiver Batterien geben und viel Zeit sowie Geld sparen“, sagt Wolfgang Schmickler.

Der jetzt veröffentlichte Fachartikel ist im Zuge der von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Forschergruppe „Theory meets Experiment: Elementary Steps in Electrocatalysis“ entstanden. Neben Schmickler und Santos waren Forscher aus Argentinien und Russland an den theoretischen Überlegungen beteiligt. Unterstützt wurden sie zudem von der argentinischen Forschungsgemeinschaft Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), von der Europäischen Union (Projekt ELCAT) und dem Deutschen Akademischen Austauschdienst (DAAD).
Der Artikel hat in der Fachzeitschrift „Angewandte Chemie International“ den Status eines „Very Important Papers“, also eines bedeutenden Beitrags.

Weitere Informationen:
Prof. Dr. Wolfgang Schmickler, Tel.: 0731 50-31340
Dr. Elizabeth Santos, Tel.: 0731 50-31342

Paola Quaino, Noelia B. Luque, Renat Nazmutdinov, Elizabeth Santos, and Wolfgang Schmickler. Why is Gold such a Good Catalyst for Oxygen Reduction in Alkaline Media? Angewandte Chemie International. DOI: 10.1002/anie.201205902 und 10.1002/ange.201205902

Annika Bingmann | idw
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Beim Laden von Lithium-Luft-Akkus entsteht hochreaktiver Singulett-Sauerstoff
04.05.2016 | Technische Universität München

nachricht Entwicklung eines schwimmenden Fundaments für Windenergieanlagen der dritten Generation
03.05.2016 | Universität Rostock

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

2012 war es die Venus, in diesem Jahr ist der Planet Merkur dran, vor der Sonne zu passieren. Für fast acht Stunden werden wir am 9. Mai 2016 die Möglichkeit haben, den Planeten Merkur als kleinen schwarzen Punkt auf der Oberfläche der Sonne durchziehen zu sehen. Das EU-Projekt STARS4ALL, an dem auch das IGB beteiligt ist, wird in Zusammenarbeit mit www.sky-live.tv das Phänomen von Teneriffa und von Island aus live übertragen. STARS4ALL bietet dazu Bildungsmaterial für Schüler an.

Am 9. Mai 2016, um die Mittagszeit, wird der Planet Merkur anfangen, die Scheibe der Sonne zu kreuzen; eine Reise, welche über sieben Stunden dauern wird.

Im Focus: MICROSCOPE sendet

Am Montag, 2. Mai 2016, erreichte die Wissenschaftlerinnen und Wissenschaftler vom Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen die erste Erfolgsmeldung von ihrem Forschungs-Satelliten. Per Videoübertragung waren sie zugeschaltet, als die französischen Kollegen das Experiment an Bord von MICROSCOPE (MICRO Satellite à traînée Compensée pour l'Observation du Principe d'Equivalence) initialisierten und das Messinstrument die ersten Testdaten übermittelte. Damit ist der wichtigste Meilenstein der Testphase erreicht, bevor sich herausstellt, ob Einsteins Relativitätstheorie auch nach dieser Satellitenmission noch Bestand haben wird.

“#TSAGE @onera_fr is on. The test masses have been released and servo looped!!!! Great all green“ lautet die Twitter-Nachricht der französischen Partner, die...

Im Focus: Genauester Spiegel der Welt bei European XFEL in Hamburg eingetroffen

Der vermutlich präziseste Spiegel der Welt ist bei European XFEL in der Metropolregion Hamburg eingetroffen. Der 95 Zentimeter lange Spiegel ist ein wichtiges Bauteil des Röntgenlasers, der 2017 in Betrieb gehen soll. Auf den ersten Blick sieht er einem normalen Spiegel durchaus ähnlich, ist jedoch extrem flach und glatt. Die größten Unebenheiten auf seiner Oberfläche haben eine Dimension von gerade einmal einem Nanometer, einem milliardstel Meter. Diese Präzision entspräche einer 40 Kilometer langen Straße, deren maximale Unebenheit gerade einmal so groß ist wie der Durchmesser eines Haars.

Der Röntgenspiegel ist der erste von mehreren, die an unterschiedlichen Stellen der Anlage zum Spiegeln und Filtern des Röntgenlaserstrahls eingebaut werden....

Im Focus: Erste Filmaufnahmen von Kernporen

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze...

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress in Berlin beginnt heute

04.05.2016 | Veranstaltungen

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungen

analytica conference 2016 in München - Foodomics, mehr als nur ein Modebegriff?

03.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beim Laden von Lithium-Luft-Akkus entsteht hochreaktiver Singulett-Sauerstoff

04.05.2016 | Energie und Elektrotechnik

Sei mit STARS4ALL dabei, wenn Merkur vor die Sonne wandert

04.05.2016 | Physik Astronomie

Mehr als eine mechanische Barriere - Epithelzellen kämpfen aktiv gegen das Grippevirus

04.05.2016 | Biowissenschaften Chemie