Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Terahertzlicht – bessere Visualisierung mit handelsüblichen Sensoren

26.10.2015

Forschende des Paul Scherrer Instituts PSI konnten mit handelsüblicher Kamera-Technologie Terahertzlicht visualisieren. Damit eröffnen sie nicht nur eine kostengünstige Alternative zum bisher üblichen Verfahren. Auch die Bildauflösung konnten sie im Vergleich um das 25-Fache verbessern. Durch seine besonderen Eigenschaften ist Terahertzlicht für viele Anwendungen von der Sicherheitstechnik bis zur medizinischen Diagnostik interessant. Auch für die Forschung ist es ein wichtiges Werkzeug.

Am PSI wird es bei den Experimenten am Freie-Elektronen-Röntgenlaser SwissFEL zum Einsatz kommen. Der am PSI entwickelte Terahertzlaser ist die zurzeit intensivste Terahertzquelle der Welt.


Mostafa Shalaby mit dem CCD-Sensor. Seine Auflösung ist um das 25-Fache höher als jene der bisher für die Visualisierung von Terahertzlicht eingesetzten Sensoren.

Foto: Paul Scherrer Institut/Markus Fischer

Von der Sicherheitskontrolle bis zur Tumorerkennung: Will man versteckte Strukturen erkennen, ist Terahertzlicht eine Methode mit Potenzial. Es durchdringt Papier, Kunststoff oder Textilien ohne Mühe und macht dahinterliegende Objekte sichtbar.

Und auch wenn seine Eindringtiefe in biologische Gewebe nur wenige Millimeter beträgt, gibt es eine Eigenschaft, die es auch für die medizinische Diagnostik besonders interessant macht: Im Gegensatz zur Röntgenstrahlung schädigt es das Gewebe nicht.

Der Grund für diese Sanftheit ist, dass das Terahertzlicht aus Teilchen (Photonen) besteht, die vergleichsweise wenig Energie haben. Eine Eigenschaft, die es auch für die Forschung zu einem wichtigen Werkzeug macht. Denn mit seiner Hilfe lassen sich Prozesse anstossen, ohne dass ihr Auslöser selbst Spuren hinterlässt. Wie zum Beispiel bei der Erforschung neuer Materialien zur magnetischen Datenspeicherung, bei denen mit Terahertzlichtblitzen blitzschnell die Magnetisierung oder die optischen Eigenschaften des zu untersuchenden Materials geändert werden kann.

Zu sanft für starke Sensoren

So praktisch diese Eigenschaft des Terahertzlichts ist, verursacht doch gerade seine geringe Photonenenergie auch einiges an Kopfzerbrechen. Bisher war es nur möglich, Terahertzlicht mit sogenannten Bolometern zu visualisieren. Diese Sensoren sind nicht nur teuer, sondern auch sehr empfindlich gegenüber Umgebungseinflüssen – allen voran Wärme. So kann es schon das Ergebnis verfälschen, wenn man nur zu nahe mit der Hand an den Sensor kommt. Zudem ist die erreichbare Bildauflösung vergleichsweise gering.

Auch die in der Forschung bereits vielfach verwendeten, sogenannten CCD-Sensoren, die in Smartphones oder Videokameras ebenfalls für ein gestochen scharfes Bild sorgen, konnten bisher für Terahertzlicht nicht eingesetzt werden. Denn das Terahertzlicht war für die robusten CCD-Sensoren bisher zu schwach – die Sensoren haben auf das Licht einfach nicht reagiert.

Mit Intensität zum scharfen Bild

Dank eines am PSI entwickelten, stärkeren Terahertzlasers konnten Forschende am PSI um Christoph Hauri nun die Sensitivitätsschranke der CCD-Sensoren überwinden. „Im Gegensatz zu bisherigen Terahertzlaserquellen zeichnet sich der am PSI entwickelte Terahertzlaser durch eine besonders hohe Intensität aus“, erklärt Christoph Hauri.

Mit ihrem Experiment konnten die Forscher zeigen, dass das intensive Terahertzlicht des PSI mit einem handelsüblichen CCD-Sensor sichtbar gemacht werden kann. Ein wichtiger technologischer Meilenstein: „Jetzt, wo das Terahertzlicht intensiv genug ist, um es mit einem normalen CCD-Sensor visualisieren zu können, bekommen wir Bilder in einer 25-mal besseren Auflösung als mit dem Bolometer“, freut sich Mostafa Shalaby, der das Experiment durchgeführt hat, „denn die Pixelgrösse des CCD-Sensors ist nur etwa ein Fünftel derjenigen des Bolometers.“ Und nun, da der CCD-Sensor genutzt werden kann, kommt noch ein weiterer wichtiger Vorteil voll zum Tragen: Seine Empfindlichkeit gegenüber Umgebungseinflüssen wie Wärme ist vernachlässigbar klein.

Nicht mehr im Dunkeln tappen

Der intensive PSI-Terahertzlaser wurde speziell für künftige Anwendungen am SwissFEL entwickelt. Der Freie-Elektronen-Laser SwissFEL wird gerade am PSI gebaut und ab Ende 2016 in Betrieb genommen. Er wird Röntgenlichtpulse mit den Eigenschaften von Laserlicht erzeugen. Die nun mögliche Visualisierung von Terahertzlicht mit CCD-Sensoren wird eine Reihe von Vorteilen bringen. Die Terahertzlaser werden im Zusammenspiel mit dem Röntgenlicht des SwissFEL eingesetzt werden. Will man zum Beispiel neue Materialien zur magnetischen Datenspeicherung erforschen, löst ein Terahertzlaserpuls die Änderung der Magnetisierung in einer Probe des zu untersuchenden Materials aus. Der Röntgenlaserpuls des SwissFEL durchleuchtet dann wenige Femtosekunden später die Probe. Damit kann man herausfinden, was sich in diesen Femtosekunden in der Probe getan hat.

Für die Forscher besonders interessant ist, dass mit den CCD-Sensoren nun Terahertzlicht in seiner Experimentierumgebung sichtbar wird. „Dadurch können wir die genaue räumliche Lage des Terahertzstrahls während des Experiments erfassen“, betont Hauri. Zudem ist die Bildwiederholrate des CCD-Sensors ausreichend hoch, um mit der Geschwindigkeit, in der die Experimente am SwissFEL ablaufen, mithalten zu können. Denn der SwissFEL feuert 100 Röntgenlichtpulse pro Sekunde ab und mit jedem dieser Pulse wird ein eigenes Experiment durchgeführt.

Nachdem die Forscher nun gezeigt haben, dass die Visualisierung von Terahertzlicht mit CCD-Sensoren prinzipiell funktioniert, geht es an die Weiterentwicklung der Idee. „Es ist natürlich möglich, CCD-Sensoren für bestimmte Anwendungen in der Forschung masszuschneidern“, sagt Carlo Vicario, der das Experiment gemeinsam mit Mostafa Shalaby realisiert hat. Und auch für Anwendungen ausserhalb der Forschung sehen die Forscher grosses Potenzial. Hauri: „CCD-Sensoren sind kostengünstig und robust.“ Für eine breite Anwendung müssten aber natürlich auch noch marktgeeignete Terahertzlaser mit ausreichender Intensität zur Verfügung stehen. „Da aber CCD-Sensoren nicht nur mehr leisten, sondern auch weniger als ein Zehntel eines Bolometers kosten, werden sie in dem schnell wachsenden Terahertz-Wissenschaftszweig sicherlich rasch Fuss fassen“, ist Hauri überzeugt.

Hintergrund: ein Licht mit Potenzial und Tücken

Mit einer Wellenlänge von 0,1 bis 1 Millimeter bewegt sich Terahertzlicht im Bereich zwischen Infrarot- und Mikrowellenstrahlung. Im Gegensatz zur Röntgenstrahlung ist Terahertzlicht nicht-ionisierend, weshalb es nach heutigem Erkenntnisstand weniger Zellschäden verursacht. Das ist insbesondere für medizinische Anwendungen von grosser Bedeutung.

Die Erzeugung von brauchbarem Terahertzlicht war lange Zeit durch eine nur schwache Strahlleistung gehandikapt. Auch funktionierte sie nur bei sehr tiefen Temperaturen. Der am PSI entwickelte Terahertzlaser ist momentan die intensivste Terahertzquelle der Welt. Er erreicht seine Intensität dadurch, dass ein Salzkristall namens DAST mit einem starken Infrarotlaser bestrahlt wird. Dabei entsteht durch eine Mischung verschiedener Frequenzen das Terahertzlicht. Das Verfahren, das am PSI angewendet wird, wandelt zehn Mal mehr Licht in Terahertzlicht um als andere Methoden. Deshalb ist er intensiver. Zudem arbeitet der Laser bei Raumtemperatur.

Die bisher zur Visualisierung von Terahertzlicht eingesetzten Bolometer beruhen darauf, dass sie die Veränderung von Wärme messen. Das macht sie insbesondere anfällig für Wärmeeinflüsse aus der Umgebung. Ausserdem ist die erreichbare Bildauflösung mit 320 x 240 Pixeln bei einer Pixelgrösse von 23,5 Mikrometer vergleichsweise gering.

Der für das Experiment verwendete CCD-Sensor (CCD steht für charge-coupled device) hatte eine Bildauflösung von 1360 x 1024 Pixel. Seine Pixelgrösse betrug 4,65 Mikrometer. Dadurch sind die Aufnahmen bedeutend schärfer als jene mit einem Bolometer.

Text: Paul Scherrer Institut/Martina Gröschl


Über das PSI
Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 380 Mio.

Kontakt/Ansprechpersonen:
Prof. Dr. Christoph Hauri, Leiter Laser-Gruppe, SwissFEL-Projekt
Paul Scherrer Institut und Ecole Polytechnique Fédérale de Lausanne EPFL
Telefon: +41 56 310 41 97
E-Mail: christoph.hauri@psi.ch [Deutsch, Englisch, Französisch]

Dr. Mostafa Shalaby, Laser-Gruppe, SwissFEL-Projekt
Paul Scherrer Institut
Telefon: +41 56 310 36 23
E-Mail: mostafa.shalaby@psi.ch [Englisch]

Dr. Carlo Vicario, Laser-Gruppe, SwissFEL-Projekt
Paul Scherrer Institut
Telefon: +41 56 310 31 62
E-Mail: carlo.vicario@psi.ch [Englisch]

Originalveröffentlichung:
High-performing nonlinear visualization of terahertz radiation on a silicon charge coupled device
Mostafa Shalaby, Carlo Vicario, Christoph Hauri
Nature Communications, 26. Oktober 2015
DOI: 10.1038/ncomms9439 http://dx.doi.org/10.1038/ncomms9439

Weitere Informationen:

http://www.psi.ch/swissfel/laser-group Laser-Gruppe, SwissFEL-Projekt, Paul Scherrer Institut
http://psi.ch/ePDR Darstellung der Medienmitteilung auf der Webseite des PSI

Martina Gröschl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht SmartMeter analysieren mit Algorithmen den Stromverbrauch
01.12.2016 | Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS

nachricht Energiehybrid: Batterie trifft Superkondensator
01.12.2016 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie