Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Technologieplattform für nachhaltige Kernenergie stellt strategische Forschungsagenda vor

03.12.2008
Die im September 2007 ins Leben gerufene europäische Technologieplattform für nachhaltige Kernenergie SNE-TP (Sustainable Nuclear Energy Technology Platform) hat ihre strategische Forschungsagenda (SRA) vorgestellt, in der die wissenschaftlichen und FuE-Prioritäten (Forschung und Entwicklung) für die nächsten zehn Jahre festgelegt werden.

Zwei Themen haben einen deutlichen Vorrang: Verringerung der Alterungseffekte bestehender "Leichtwasser"-Reaktoren sowie die Vorbereitung einer Demonstration der "schnellen Neutronenreaktoren der vierten Generation".

Die Technologieplattform führt Experten aus der Industrie, von Forschungsorganisationen, Universitäten und Nichtregierungsorganisationen zusammen, um die Anstrengungen im Rahmen einer gemeinsamen Vision für Forschung, Entwicklung und Innovation für Kernenergiesysteme zu koordinieren. Die Plattform umfasst 60 Mitglieder aus 19 europäischen Ländern.

Der Europäischen Kommission zufolge "leistet die Kernenergie, die derzeit 31% der EU-Stromproduktion liefert, einen wichtigen Beitrag zur Entwicklung der kohlenstoffarmen Wirtschaft". Zur Erfüllung der Ziele zur Reduzierung der Treibhausgasemissionen in Europa um 20% bis 2020 und als Teil der Bemühungen zur Realisierung einer kohlenstoffarmen Gesellschaft (low-carbon society) bis 2050 hat die Europäische Kommission die FuE-Aussichten für kohlenstoffarme Energietechnologien in ihrem Strategieplan für Energietechnologie (SET-Plan) im November des letzten Jahres festgelegt. Dieser Plan nennt die Energie aus Kernspaltung einen wichtigen Beitrag zur Erfüllung des 2020-Ziele.

Schnelle Neutronenreaktoren können die Energieproduktion einer bestimmten Menge Uran um das 50-fache oder mehr multiplizieren. In der SRA heißt es, eine neue Generation dieser Reaktoren sei notwendig, um derzeitige Standards und Normen zu Sicherheit, Betrieb und Wettbewerbsfähigkeit zu erfüllen.

"Es wird angepeilt", lautet es in der SRA, "dass diese neue Generation von schnellen Neutronenreaktoren (Gen-IV) parallel mit den verbesserten Leichtwasserreaktoren der dritten Generation (Gen-III), die derzeit in Europa gebaut werden, betrieben wird. Damit wird der Anteil von einem Drittel an der Energieproduktion in Europa bewahrt."

Obwohl die Entwicklung der nächsten Generation von Reaktoren klaren Vorrang hat, "ist es unentbehrlich, den Bau von neuen Leichtwasserreaktoren der dritten Generation zu fördern", heißt es in dem Bericht. "Um einheitliche Genehmigungsanforderungen in Europa zu erzielen, sollte die Bauartzulassung harmonisiert werden."

Das Abfallmanagement erhält in dem Bericht ebenfalls Priorität. Dabei wird hervorgehoben, dass es wichtig sei, effizientere Kerne und Brennstäbe einzusetzen, um eine optimale Leistung zu erhalten und die Menge und Lebensdauer von Abfällen zu minimieren. Außerdem wird die Wichtigkeit fortgesetzter Forschungen zu Partitionierungs- und Transmutationtechnologien unterstrichen. Innerhalb von zehn Jahren, heißt es in dem Bericht, werden die ersten geologischen Endlager für hochradioaktive Abfälle in der EU in Betrieb sein.

Die strategische Forschungsagenda legt klare Ziele für die Entwicklung anderer Anwendungen für Nukleartechnologie dar, die auf fossilen Brennstoffen basierende Industrieverfahren wie die Massenproduktion von Wasserstoff für die Synthetisierung von Dünger oder die Raffinierung von Rohöl ersetzen können.

Forschungen in Bereichen der Werkstoffverbesserung, der Herstellungs- und Schweißverfahren, der innovativen Energieumwandlungssysteme, der verbesserten Sicherheit und innovativen Brennstoffe erhalten ebenfalls Vorrang, ebenso wie die rechnergestützte Modellierung für detaillierte Simulationen von Reaktorverhalten in einer Reihe von Szenarien bei Normal- und Unfallbedingungen.

Das Thema Sicherheit zieht sich durch die gesamte Agenda. "Die Forschung zur kerntechnischen Sicherheit wird Arbeiten zu menschlichen wie auch zu organisatorischen Faktoren umfassen", heißt es dort. "Darüber hinaus müssen Forschungen durchgeführt werden, die zum Bau von wirklich sicheren schnellen Neutronenreaktoren der vierten Generation beitragen."

Die Kosten für den Unterhalt von Forschungsinfrastrukturen sind hoch. In der SRA wird hervorgehoben, dass ein Netzwerk von komplementären Anlagen in Europa eingerichtet werden sollte; dazu gehören die Modernisierung bestehender sowie der Bau neuer Anlagen. Zu den neuen Anlagen gehören experimentelle Anlagen zum Brennstoffkreislauf und extrem große Nuklearforschungsanlagen wie der Jules-Horowitz-Materialprüfungsreaktor in Frankreich.

Darüber hinaus spricht die SRA die Wichtigkeit von Aus- und Weiterbildung an, da dringend hoch qualifiziertes Personal benötigt wird. "Der Nuklearsektor muss sich mit der Notwendigkeit befassen, seinen Kompetenzpool zu verstärken und weiterzuentwickeln, das bestehende Wissen zu verwalten und Netzwerke von Forschungsinfrastrukturen zu organisieren." Anstrengungen zur Aus- und Weiterbildung erhalten die maßgebliche Unterstützung des European Nuclear Education Networks (ENEN), das unter den EU-Rahmenprogrammen (RP5 bis RP7) finanziert wird.

Die diese Woche in Brüssel vorgelegte Strategische Forschungsagenda steht der Öffentlichkeit zur Verfügung und von allen Interessengruppen werden Stellungnahmen erbeten.

| CORDIS
Weitere Informationen:
http://www.snetp.eu
http://www.kooperation-international.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics