Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tarnkappe könnte Solarzellen-Effizienz erhöhen

25.09.2015

Ein Erfolgsfaktor für die Energiewende ist der Ausbau der erneuerbaren Energien. Allerdings ist deren Wirkungsgrad gegenüber herkömmlichen Energiequellen zum Teil noch deutlich geringer. Die Effizienz von handelsüblichen Solarzellen beispielsweise liegt bei etwa 20 Prozent. Wissenschaftler am Karlsruher Institut für Technologie (KIT) veröffentlichten nun einen unkonventionellen Weg, um die Effizienz der Panels zu steigern: Optische Tarnkappen leiten das Sonnenlicht um Objekte, wie etwa die Kontakte zur Stromabfuhr herum, die eigentlich einen Schatten auf das Solarpanel werfen. DOI: 10.1364/OPTICA.2.000850

Aber nicht nur für die Energiewende, sondern auch zur Steigerung der Wirtschaftlichkeit muss die Energieeffizienz von Solarpanels deutlich verbessert werden.


Eine spezielle Tarnkappen-Beschichtung (rechts) leitet Sonnenlicht an den Kontakten für die Stromableitung vorbei, auf die aktive Fläche der Solarzelle.

Grafik: Martin Schumann, KIT

Module, wie sie heute auf Dächern montiert werden, wandeln nur ein Fünftel des Lichts in Strom um, das bedeutet, dass etwa 80 Prozent der Sonnenenergie verloren gehen. Die Gründe für die hohen Verluste sind vielfältig.

Beispielsweise ist bis zu einem Zehntel der Fläche der Solarzellen mit sogenannten Kontaktfingern bedeckt, die den erzeugten Strom abführen. Dort, wo sich die Kontaktfinger befinden, kann das Licht die aktive Fläche der Solarzelle nicht erreichen, die Effizienz der gesamten Zelle sinkt.

„Unsere Modellexperimente haben gezeigt, dass die Tarnschicht die Kontaktfinger fast vollständig unsichtbar macht“, sagt Doktorand Martin Schumann vom Institut für Angewandte Physik am KIT, der die Experimente und Simulationen durchgeführt hat. Physiker des KIT um den Leiter des Forschungsprojekts Carsten Rockstuhl haben gemeinsam mit Partnern aus Aachen, Freiburg, Halle, Jena und Jülich die am KIT entworfene optische Tarnkappe weiterentwickelt, um das einfallende Licht um die Kontaktfinger der Solarzelle herumzuführen.

Normalerweise ist das Ziel der Tarnkappen-Forschung Objekte unsichtbar zu machen. Dafür wird Licht um das zu tarnende Objekt herum geleitet. Bei diesem Forschungsprojekt lag der Fokus aber nicht auf der Tarnung der Kontaktfinger an sich, sondern auf dem umgeleiteten Licht, das dank der Tarnkappe potenziell die aktive Fläche der Solarzelle erreicht und damit für diese nutzbar gemacht wird.

Um den Tarneffekt zu erzielen, gingen die Wissenschaftler zwei Möglichkeiten nach. Bei beiden Verfahren wird auf die Solarzelle eine Polymerschicht aufgebracht. Diese muss exakt berechnete optische Eigenschaften besitzen, nämlich entweder einen Brechungsindex, der vom Ort abhängt, oder eine spezielle Oberflächenform. Das zweite Konzept ist besonders vielversprechend, da es sich potenziell auch kostengünstig in die Massenproduktion von Solarzellen integrieren lässt. Die Oberfläche der Tarnschicht weist dabei Rillen auf, die entlang der Kontaktfinger ausgerichtet sind. So wird das einfallende Licht von den Kontaktfingern weg gebrochen und trifft schließlich auf die aktive Fläche der Solarzelle (siehe Abbildung).

Die Forscher haben in einem Modellexperiment und anhand von ausführlichen Simulationen gezeigt, dass sich beide Konzepte dazu eignen, die Kontaktfinger zu tarnen. Im nächsten Schritt ist geplant, die Tarnschicht auf eine Solarzelle aufzubringen, um die tatsächliche Effizienzsteigerung zu bestimmen. Die Physiker sind optimistisch, dass sich auch unter realen Bedingungen eine Verbesserung durch die Tarnschicht ergibt: „Wenn man eine derartige Schicht auf eine echte Solarzelle aufbringt, sollten sich die optischen Verluste durch die Kontaktfinger reduzieren und die Effizienz sollte um bis zu zehn Prozent steigen“, sagt Martin Schumann.

Veröffentlichung:
Martin F. Schumann, Samuel Wiesendanger, Jan Christoph Goldschmidt, Benedikt Bläsi, Karsten Bittkau, Ulrich W. Paetzold, Alexander Sprafke, Ralf B. Wehrspohn, Carsten Rockstuhl, and Martin Wegener, "Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes," Optica 2, 850-853 (2015)
DOI: 10.1364/OPTICA.2.000850

Weitere Informationen zur Tarnkappen-Forschung am KIT:
http://www.kit.edu/kit/pi_2014_15233.php und
http://www.kit.edu/kit/pi_2011_6866.php

Das Karlsruher Institut für Technologie (KIT) vereint als selbstständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Weitere Informationen:

http://dx.doi.org/10.1364/OPTICA.2.000850

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Geräteschutzschalter erfüllt NEC Class 2
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Elektronikgehäuse für Anzeigeeinheiten
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten