Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tarnkappe könnte Solarzellen-Effizienz erhöhen

25.09.2015

Ein Erfolgsfaktor für die Energiewende ist der Ausbau der erneuerbaren Energien. Allerdings ist deren Wirkungsgrad gegenüber herkömmlichen Energiequellen zum Teil noch deutlich geringer. Die Effizienz von handelsüblichen Solarzellen beispielsweise liegt bei etwa 20 Prozent. Wissenschaftler am Karlsruher Institut für Technologie (KIT) veröffentlichten nun einen unkonventionellen Weg, um die Effizienz der Panels zu steigern: Optische Tarnkappen leiten das Sonnenlicht um Objekte, wie etwa die Kontakte zur Stromabfuhr herum, die eigentlich einen Schatten auf das Solarpanel werfen. DOI: 10.1364/OPTICA.2.000850

Aber nicht nur für die Energiewende, sondern auch zur Steigerung der Wirtschaftlichkeit muss die Energieeffizienz von Solarpanels deutlich verbessert werden.


Eine spezielle Tarnkappen-Beschichtung (rechts) leitet Sonnenlicht an den Kontakten für die Stromableitung vorbei, auf die aktive Fläche der Solarzelle.

Grafik: Martin Schumann, KIT

Module, wie sie heute auf Dächern montiert werden, wandeln nur ein Fünftel des Lichts in Strom um, das bedeutet, dass etwa 80 Prozent der Sonnenenergie verloren gehen. Die Gründe für die hohen Verluste sind vielfältig.

Beispielsweise ist bis zu einem Zehntel der Fläche der Solarzellen mit sogenannten Kontaktfingern bedeckt, die den erzeugten Strom abführen. Dort, wo sich die Kontaktfinger befinden, kann das Licht die aktive Fläche der Solarzelle nicht erreichen, die Effizienz der gesamten Zelle sinkt.

„Unsere Modellexperimente haben gezeigt, dass die Tarnschicht die Kontaktfinger fast vollständig unsichtbar macht“, sagt Doktorand Martin Schumann vom Institut für Angewandte Physik am KIT, der die Experimente und Simulationen durchgeführt hat. Physiker des KIT um den Leiter des Forschungsprojekts Carsten Rockstuhl haben gemeinsam mit Partnern aus Aachen, Freiburg, Halle, Jena und Jülich die am KIT entworfene optische Tarnkappe weiterentwickelt, um das einfallende Licht um die Kontaktfinger der Solarzelle herumzuführen.

Normalerweise ist das Ziel der Tarnkappen-Forschung Objekte unsichtbar zu machen. Dafür wird Licht um das zu tarnende Objekt herum geleitet. Bei diesem Forschungsprojekt lag der Fokus aber nicht auf der Tarnung der Kontaktfinger an sich, sondern auf dem umgeleiteten Licht, das dank der Tarnkappe potenziell die aktive Fläche der Solarzelle erreicht und damit für diese nutzbar gemacht wird.

Um den Tarneffekt zu erzielen, gingen die Wissenschaftler zwei Möglichkeiten nach. Bei beiden Verfahren wird auf die Solarzelle eine Polymerschicht aufgebracht. Diese muss exakt berechnete optische Eigenschaften besitzen, nämlich entweder einen Brechungsindex, der vom Ort abhängt, oder eine spezielle Oberflächenform. Das zweite Konzept ist besonders vielversprechend, da es sich potenziell auch kostengünstig in die Massenproduktion von Solarzellen integrieren lässt. Die Oberfläche der Tarnschicht weist dabei Rillen auf, die entlang der Kontaktfinger ausgerichtet sind. So wird das einfallende Licht von den Kontaktfingern weg gebrochen und trifft schließlich auf die aktive Fläche der Solarzelle (siehe Abbildung).

Die Forscher haben in einem Modellexperiment und anhand von ausführlichen Simulationen gezeigt, dass sich beide Konzepte dazu eignen, die Kontaktfinger zu tarnen. Im nächsten Schritt ist geplant, die Tarnschicht auf eine Solarzelle aufzubringen, um die tatsächliche Effizienzsteigerung zu bestimmen. Die Physiker sind optimistisch, dass sich auch unter realen Bedingungen eine Verbesserung durch die Tarnschicht ergibt: „Wenn man eine derartige Schicht auf eine echte Solarzelle aufbringt, sollten sich die optischen Verluste durch die Kontaktfinger reduzieren und die Effizienz sollte um bis zu zehn Prozent steigen“, sagt Martin Schumann.

Veröffentlichung:
Martin F. Schumann, Samuel Wiesendanger, Jan Christoph Goldschmidt, Benedikt Bläsi, Karsten Bittkau, Ulrich W. Paetzold, Alexander Sprafke, Ralf B. Wehrspohn, Carsten Rockstuhl, and Martin Wegener, "Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes," Optica 2, 850-853 (2015)
DOI: 10.1364/OPTICA.2.000850

Weitere Informationen zur Tarnkappen-Forschung am KIT:
http://www.kit.edu/kit/pi_2014_15233.php und
http://www.kit.edu/kit/pi_2011_6866.php

Das Karlsruher Institut für Technologie (KIT) vereint als selbstständige Körperschaft des öffentlichen Rechts die Aufgaben einer Universität des Landes Baden-Württemberg und eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft. Seine Kernaufgaben Forschung, Lehre und Innovation verbindet das KIT zu einer Mission. Mit rund 9 400 Mitarbeiterinnen und Mitarbeitern sowie 24 500 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Weitere Informationen:

http://dx.doi.org/10.1364/OPTICA.2.000850

Monika Landgraf | Karlsruher Institut für Technologie
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik