Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supercomputer mit heissem Wasser gekühlt

23.06.2009
IBM und die ETH Zürich bauen einen neuartigen Supercomputer, der mit heissem Wasser gekühlt wird und dessen abgeführte Wärme direkt für die Beheizung der ETH-Gebäude genutzt wird.

Das innovative System mit dem Namen "Aquasar" soll den Energieverbrauch um 40% senken und die CO2-Bilanz im Vergleich zu ähnlichen Systemen um bis zu 85% reduzieren.

Computersysteme und Rechenzentren sind wahre Energiefresser: In den letzten vier Jahren hat sich der Energiebedarf von Rechenzentren weltweit fast verdoppelt. "Die Energieversorgung ist die grösste Herausforderung des 21. Jahrhunderts. Geschwindigkeit und Leistung dürfen deshalb nicht mehr die einzigen Kriterien sein, wenn es darum geht, Computersysteme zu bauen.

Unser neues Ziel ist, Hochleistungsrechner mit niedrigem Energieverbrauch zu entwickeln", so Prof. Dimos Poulikakos, Projektleiter und Leiter des Laboratoriums für Thermodynamik in Neuen Technologien der ETH Zürich. Computersysteme und Rechenzentren energieeffizienter zu machen, ist ein komplexes Unterfangen. Als Lösung präsentieren die ETH Zürich und IBM gemeinsam den neuen Supercomputer "Aquasar" - ein Experiment, das einen wichtigen Beitrag zu nachhaltiger IT leisten soll.

Einfaches Kühlmittel - grosse Wirkung
Ein zentraler Aspekt bei der Energieeffizienz ist die Kühlung des Computers. Bis zu 50% der Energie werden nicht für die Rechenleistung selbst, sondern für die notwendige Kühlung verbraucht. Das Problem ist, dass ein Computerchip zehnmal mehr Wärme als eine Kochplatte auf der gleichen Fläche entwickelt. Ungekühlt überhitzt er innert Sekunden und geht kaputt. Für einen sicheren Betrieb muss der Chip daher stetig unter 85°C gekühlt werden. Meistens wird für die Kühlung Luft verwendet, obwohl Luft eigentlich ein schlechter Wärmeleiter ist. Besser eignet sich Wasser, da es Wärme 4000-mal effizienter als Luft speichert. Zudem kann Wasser die Wärme hervorragend transportieren. Allerdings muss das Kühlsystem hermetisch dicht sein, damit Wasser und Elektronik nicht in Berührung kommen.

Bei "Aquasar" bringen die Forscher die Wasserkühlung so direkt wie möglich an die Wärmequelle - den Chip - heran. Sie setzen leistungsfähige Mikrokanalkühler ein, die auf der Rückseite des Chips angebracht werden. Dank der Kühler können die Chips selbst mit bis zu 60°C heissem Wasser noch auf Betriebstemperatur gekühlt und wertvolle Abwärme gewonnen werden. Damit man die Wärmeenergie, die man von den Prozessoren wegleitet, am effizientesten nutzen kann, muss die Temperatur der Abwärme möglichst hoch sein. Prinzipiell gilt: Je heisser die Wärmeenergie desto wertvoller.

Wärme als wertvolle Ressource
Die gesamte Kühlung ist ein geschlossener Kreislauf. Das System benötigt etwa 10 Liter Wasser, wobei eine Pumpe einen Durchfluss von 30 Litern pro Minute garantiert. Die Abwärme wird durch einen Wärmetauscher an die Gebäudehei-zung abgegeben. "Wärme ist ein wertvolles Gut, auf das wir angewiesen sind und das wir täglich teuer kaufen. Indem wir Abwärme von den aktiven Bauteilen eines Computersystems so direkt und effizient wie möglich abtransportieren, können wir sie als Ressource wieder verwenden. Das spart Energie und senkt den CO2-Ausstoss. Dieses Projekt ist ein wichtiger Schritt hin zu nachhaltigen, emissionsneutralen Rechenzentren", erklärt Dr. Bruno Michel, Manager Advanced Thermal Packaging des IBM Forschungslabors Zürich.

"Aquasar" verbindet also mehrere Vorteile: Da das System keine energieintensive Kältemaschinen benötigt, sinkt der Energieverbrauch gegenüber herkömmlichen luftgekühlten Systemen bis zu 40%. Durch direkte Abwärmenutzung gewinnt man zudem wertvolle Wärmeenergie zurück, die sich vielfältig verwenden lässt. Im Vergleich zu ähnlichen Systemen reduziert sich dadurch die CO2-Bilanz um bis zu 85% - was bei durchschnittlichem Betrieb etwa 30 Tonnen CO2 pro Jahr entspräche.

Blutkreislauf nachahmen
Inspiriert wurde das Forschungsteam bei der Entwicklung des Kühlkreislaufs durch die Natur. Die Wissenschaftler testen Systeme, die den hochoptimierten, menschlichen Blutkreislauf nachahmen. Im Körper sorgt ein Netzwerk von Gefässen und Kapillaren dafür, dass Wärme und Energie mit der grösstmöglichen Effizienz in jeden Teil unseres Körpers transportiert werden. Die Kühlung von "Aquasar" ist nach den gleichen Prinzipien aufgebaut. Die etwa 2 cm2 grossen Mikrokanal-Wasserkühler verfügen über viele hundert kleine Kapillaren.
"Aquasar" im Einsatz
An der ETH Zürich wird aber nicht nur überprüft, ob die neue Wasserkühlung funktioniert und wie viel thermische Energie dabei zu gewinnen ist, sondern auch wie leistungsfähig "Aquasar" ist. Das "Computational Science and Engineering"-Labor des Lehrstuhls für Computerwissenschaften der ETH Zürich verwendet "Aquasar" für komplexe Strömungssimulationen. Wissenschaftler dieses Labors optimieren in Zusammenarbeit mit dem IBM Forschungszentrum und anderen Partnerinstitutionen auch die Effizienz, mit der die Algorithmen berechnet werden.
Drei Jahre gemeinsame Forschung
Der Bau von "Aquasar" ist Teil des dreijährigen, gemeinschaftlichen Forschungs-programms "Direkte Abwärmenutzung von flüssiggekühlten Supercomputern: Der Weg zu energiesparenden, emissionsfreien Hochleistungsrechnern und Rechenzentren". An diesem Projekt sind das IBM Forschungslabor Zürich, die ETH Zürich, die ETH Lausanne und das Schweizer Kompetenzzentrum für Energie und Mobilität (CCEM) beteiligt. Aquasar wird zudem mit der Unterstüt-zung durch IBM Schweiz und das IBM Forschungs- und -Entwicklungslabor in Böblingen, Deutschland, realisiert.
Weitere Informationen:
ETH Zürich
Prof. Dimos Poulikakos
Institut für Energietechnik
Telefon:+41 44 632 27 38
dimos.poulikakos@ethz.ch

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften
29.03.2017 | Technische Universität Dresden

nachricht Elektromobilität: Forschungen des Fraunhofer LBF ebnen den Weg in die Alltagstauglichkeit
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten