Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom ohne Kabel

02.04.2012
Handys und Laptops funktionieren problemlos per Akku. Doch viele Anwendungen aus der Medizin-, Umwelt- und Prüftechnik wie Implantate und Sensoren lassen sich aufgrund der begrenzten Lebensdauer von Batterien nicht mit solchen betreiben. Forscher haben jetzt ein Verfahren entwickelt, das diese Systeme drahtlos mit Energie versorgt.

Seit mehr als 50 Jahren geben Schrittmacher dem Herzen den Takt vor. Seither ist die Entwicklung bei mikroelektronischen Implantaten rasant fortgeschritten, sie sind immer kleiner und technisch ausgefeilter geworden.


Mithilfe der magnetischen Kopplung lässt sich Energie drahtlos von einem Sender- zu einem Empfängermodul übertragen. Der Prototyp mit dem Sendermodul lässt sich am Gürtel befestigen. © Fraunhofer IKTS

Der Trend geht hin zu miniaturisierten, intelligenten Systemen, die Therapie- und Diagnosefunktionen übernehmen. Künftig werden beispielsweise implantierbare Sensoren Blutzuckerspiegel, Blutdruck oder die Sauerstoffsättigung von tumorösem Gewebe messen und die Patientendaten anschließend per Telemetrie übertragen. Medikamentendosiersysteme und Infusionspumpen wiederum sollen gezielt medizinische Wirkstoffe im Körper freisetzen und so Nebenwirkungen verringern.

Technik am Gürtel tragbar

All diese Entwicklungen setzen sich aus Sensoren, Aktoren, Signalverarbeitungseinheiten und der Steuerungselektronik zusammen – und hier liegt auch das Problem: Sie müssen mit Energie versorgt werden. Akkus scheiden aufgrund ihrer begrenzten Lebensdauer meistens aus – schließlich bleiben die Implantate jahrelang im Körper. Derzeit kommen meist radiowellenbasierte (HF) und induktive Systeme zum Einsatz. Diese weisen jedoch lage-, positions- und bewegungsbedingte Wirkungsgradunterschiede auf und sind zudem oft in ihrer Reichweite beschränkt. Ein neues Energietransferverfahren soll künftig die Einschränkungen der bisherigen Methoden umgehen. Forschern am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Hermsdorf ist es gelungen, Strom drahtlos von einem tragbaren Sendermodul zu einem mobilen Generatormodul – dem Empfänger – zu übertragen. »Das Transfermodul in Form eines Zylinders ist so klein und kompakt, dass es sich am Gürtel befestigen lässt«, sagt Dr. Holger Lausch, Wissenschaftler am IKTS. Der Sender stellt eine elektrische Leistung von über 100 Milliwatt bereit und hat eine Reichweite von etwa 50 Zentimeter. Der Empfänger kann sich also fast überall im Körper befinden. »Mit unserem tragbaren Gerät können wir berührungslos Implantate, Medikamentendosiersysteme und andere medizintechnische Anwendungen ferngesteuert mit Energie versorgen – etwa schluckbare Videoendoskopiekapseln, die den Magen-Darm-Trakt durchwandern und Bilder vom Körperinneren nach außen senden«, so Lausch. Das Generatormodul lässt sich unabhängig vom Energietransfer jederzeit auf seine Position und Lage orten. Befindet sich der Generator also in einer Videoendoskopiekapsel ist die Zuordnung der Bilder zu bestimmten Darmregionen möglich. Ist er in einer Dosierkapsel platziert, lässt sich der Medikamentenwirkstoff zielgenau freisetzen.

Energie durchdringt alle nichtmagnetischen Materialien

Doch wie funktioniert das neue, bereits patentierte Verfahren? Im Transfermodul erzeugt ein rotierender, durch einen EC-Motor angetriebener Magnet ein magnetisches Drehfeld. Eine im Empfänger befindliche Magnetkugel koppelt an das wechselnde äußere Magnetfeld an und wird dadurch selbst in Rotation versetzt. Die Rotationsbewegung wird in Elektrizität umgewandelt, der Strom also erst im Generatormodul erzeugt. »Durch die magnetische Kopplung lässt sich die Energie durch alle nichtmagnetischen Materialien wie etwa biologisches Gewebe, Knochen, Organe, Wasser, Kunststoff oder sogar verschiedene Metalle transportieren. Außerdem hat das so hergestellte Magnetfeld keine schädlichen Nebenwirkungen für den Menschen. Auch eine Gewebeerwärmung ist ausgeschlossen«, betont Lausch die Vorteile des Verfahrens.

Da die Module, die als Prototypen vorliegen, hinsichtlich ihrer Reichweite, Baugröße und Leistungsfähigkeit skalierbar sind, lassen sie sich nicht nur für medizintechnische Anwendungen nutzen. Vielmehr können sie auch hermetisch abgeschlossene Sensoren – etwa in Wänden oder Brücken – drahtlos mit Energie versorgen. Sie eignen sich somit für den Einsatz im Maschinen- und Anlagenbau oder im Baugewerbe. Auch das Aufladen von Energiespeichern und das Aktivieren von elektrischen Bauelementen ist denkbar.

Wie ihr drahtloses Energieübertragungsverfahren funktioniert, demonstrieren Lausch und sein Team auf der Hannover Messe vom 23. bis 27. April am Beispiel eines Hüftimplantats (Halle 13, Stand C10). Hier wird die Technik genutzt, um die Schaft-Kugel-Pfanne elektrisch zu stimulieren und so das Anwachsen von Knorpel- und Knochenzellen anzuregen.

Dr. phil. Holger Lausch | Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/april/strom-ohne-kabel.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie