Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom ohne Kabel

02.04.2012
Handys und Laptops funktionieren problemlos per Akku. Doch viele Anwendungen aus der Medizin-, Umwelt- und Prüftechnik wie Implantate und Sensoren lassen sich aufgrund der begrenzten Lebensdauer von Batterien nicht mit solchen betreiben. Forscher haben jetzt ein Verfahren entwickelt, das diese Systeme drahtlos mit Energie versorgt.

Seit mehr als 50 Jahren geben Schrittmacher dem Herzen den Takt vor. Seither ist die Entwicklung bei mikroelektronischen Implantaten rasant fortgeschritten, sie sind immer kleiner und technisch ausgefeilter geworden.


Mithilfe der magnetischen Kopplung lässt sich Energie drahtlos von einem Sender- zu einem Empfängermodul übertragen. Der Prototyp mit dem Sendermodul lässt sich am Gürtel befestigen. © Fraunhofer IKTS

Der Trend geht hin zu miniaturisierten, intelligenten Systemen, die Therapie- und Diagnosefunktionen übernehmen. Künftig werden beispielsweise implantierbare Sensoren Blutzuckerspiegel, Blutdruck oder die Sauerstoffsättigung von tumorösem Gewebe messen und die Patientendaten anschließend per Telemetrie übertragen. Medikamentendosiersysteme und Infusionspumpen wiederum sollen gezielt medizinische Wirkstoffe im Körper freisetzen und so Nebenwirkungen verringern.

Technik am Gürtel tragbar

All diese Entwicklungen setzen sich aus Sensoren, Aktoren, Signalverarbeitungseinheiten und der Steuerungselektronik zusammen – und hier liegt auch das Problem: Sie müssen mit Energie versorgt werden. Akkus scheiden aufgrund ihrer begrenzten Lebensdauer meistens aus – schließlich bleiben die Implantate jahrelang im Körper. Derzeit kommen meist radiowellenbasierte (HF) und induktive Systeme zum Einsatz. Diese weisen jedoch lage-, positions- und bewegungsbedingte Wirkungsgradunterschiede auf und sind zudem oft in ihrer Reichweite beschränkt. Ein neues Energietransferverfahren soll künftig die Einschränkungen der bisherigen Methoden umgehen. Forschern am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Hermsdorf ist es gelungen, Strom drahtlos von einem tragbaren Sendermodul zu einem mobilen Generatormodul – dem Empfänger – zu übertragen. »Das Transfermodul in Form eines Zylinders ist so klein und kompakt, dass es sich am Gürtel befestigen lässt«, sagt Dr. Holger Lausch, Wissenschaftler am IKTS. Der Sender stellt eine elektrische Leistung von über 100 Milliwatt bereit und hat eine Reichweite von etwa 50 Zentimeter. Der Empfänger kann sich also fast überall im Körper befinden. »Mit unserem tragbaren Gerät können wir berührungslos Implantate, Medikamentendosiersysteme und andere medizintechnische Anwendungen ferngesteuert mit Energie versorgen – etwa schluckbare Videoendoskopiekapseln, die den Magen-Darm-Trakt durchwandern und Bilder vom Körperinneren nach außen senden«, so Lausch. Das Generatormodul lässt sich unabhängig vom Energietransfer jederzeit auf seine Position und Lage orten. Befindet sich der Generator also in einer Videoendoskopiekapsel ist die Zuordnung der Bilder zu bestimmten Darmregionen möglich. Ist er in einer Dosierkapsel platziert, lässt sich der Medikamentenwirkstoff zielgenau freisetzen.

Energie durchdringt alle nichtmagnetischen Materialien

Doch wie funktioniert das neue, bereits patentierte Verfahren? Im Transfermodul erzeugt ein rotierender, durch einen EC-Motor angetriebener Magnet ein magnetisches Drehfeld. Eine im Empfänger befindliche Magnetkugel koppelt an das wechselnde äußere Magnetfeld an und wird dadurch selbst in Rotation versetzt. Die Rotationsbewegung wird in Elektrizität umgewandelt, der Strom also erst im Generatormodul erzeugt. »Durch die magnetische Kopplung lässt sich die Energie durch alle nichtmagnetischen Materialien wie etwa biologisches Gewebe, Knochen, Organe, Wasser, Kunststoff oder sogar verschiedene Metalle transportieren. Außerdem hat das so hergestellte Magnetfeld keine schädlichen Nebenwirkungen für den Menschen. Auch eine Gewebeerwärmung ist ausgeschlossen«, betont Lausch die Vorteile des Verfahrens.

Da die Module, die als Prototypen vorliegen, hinsichtlich ihrer Reichweite, Baugröße und Leistungsfähigkeit skalierbar sind, lassen sie sich nicht nur für medizintechnische Anwendungen nutzen. Vielmehr können sie auch hermetisch abgeschlossene Sensoren – etwa in Wänden oder Brücken – drahtlos mit Energie versorgen. Sie eignen sich somit für den Einsatz im Maschinen- und Anlagenbau oder im Baugewerbe. Auch das Aufladen von Energiespeichern und das Aktivieren von elektrischen Bauelementen ist denkbar.

Wie ihr drahtloses Energieübertragungsverfahren funktioniert, demonstrieren Lausch und sein Team auf der Hannover Messe vom 23. bis 27. April am Beispiel eines Hüftimplantats (Halle 13, Stand C10). Hier wird die Technik genutzt, um die Schaft-Kugel-Pfanne elektrisch zu stimulieren und so das Anwachsen von Knorpel- und Knochenzellen anzuregen.

Dr. phil. Holger Lausch | Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2012/april/strom-ohne-kabel.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik