Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom direkt aus Diesel: CD-Labor soll Brennstoffzellen verbessern

02.02.2015

An der TU Wien und am Forschungszentrum Jülich wurde ein Christian-Doppler-Labor eingerichtet, in dem die Vorgänge in Brennstoffzellen erforscht und verbessert werden sollen.

Wenn ein Lastwagen stillsteht und sich der Motor im Leerlauf befindet, dann wird wertvoller Treibstoff verschwendet. Doch oft werden Motoren einfach deshalb laufengelassen, weil die Stromversorgung im Fahrzeug aufrechterhalten werden soll – etwa, damit im Stau die Klimaanlage weiterläuft. Eine Lösung könnten Brennstoffzellen bieten, die aus dem Dieseltreibstoff direkt Strom gewinnen, ohne dass man dafür den Motor und die Lichtmaschine laufen lassen müsste.


Arbeit im neuen CD-Labor: Kontaktierung einer Ni-Modellanode

TU Wien

Am 21. Jänner 2015 wurde ein Christian-Doppler-Labor eröffnet, das sich der Erforschung solcher Brennstoffzellen widmet. Koordiniert wird es von Martin Bram vom Institut für Energie und Klimatechnik des Forschungszentrums Jülich. Ein Externes Modul des CD-Labors ist an der TU Wien angesiedelt, es wird von Alexander Opitz (Institut für Chemische Technologien und Analytik) geleitet. Als Industriepartner sind die österreichischen Firmen AVL und Plansee am neuen Labor beteiligt.

Strom direkt aus Treibstoff

„AVL List hat bereits sehr erfolgreich ein Brennstoffzellensystem entwickelt, das direkt aus Diesel Strom gewinnt. Der Wirkungsgrad ist dabei deutlich höher als bei der Erzeugung von Strom über die Verbrennung von Diesel im Motor“, erklärt Alexander Opitz. Gerade bei Lastwägen könnte das eine deutliche Ersparnis mit sich bringen, wenn etwa Fernfahrer bei einer längeren Pause im Sommer den Motor nicht mehr laufen lassen müssten, um die Klimaanlage weiter zu betreiben oder elektrische Geräte zu nutzen.

Aus dem Treibstoff wird zunächst mit Hilfe eines Katalysators sogenanntes Synthesegas erzeugt, das hauptsächlich aus Wasserstoff und Kohlenmonoxid besteht. Daraus kann dann in einem weiteren Schritt mit Hilfe einer Festoxidbrennstoffzelle elektrischer Strom gewonnen werden.

Metall statt Keramik - Österreichisches Wissenschafts-, Forschungs- und Wirtschaftsministerium fördert die Erforschung eines neuartigen Brennstoffzellentyps

Das System von AVL verwendet sogenannte vollkeramische Zellen - die derzeit am besten erforschte und am weitesten entwickelte Bauform von Festoxidbrennstoffzellen. Keramische Materialien sind allerdings sehr spröde, wenn die Zelle in einem Fahrzeug ständig Erschütterungen ausgesetzt wird, könnte das zu Problemen führen.

Abhilfe würde hier der Einsatz von metallgestützten Zellen schaffen. „Plansee hat in den letzten Jahren eine derartige Festoxidbrennstoffzelle entwickelt, diese metallgestützten Zellen liefern auch bereits eine ausreichend hohe Leistung um im AVL-System eingesetzt werden zu können“, sagt Alexander Opitz. Allerdings ist auch die Lebensdauer dieses Brennstoffzellen-Typs derzeit noch begrenzt. „Speziell der im Diesel vorhandene Schwefel ist für die Anoden der metallgestützten Zellen ein Problem. Wir wollen nun einerseits die elektrochemischen Prozesse verstehen, die hinter dieser Schwefelvergiftung stecken und andererseits Materialien entwickeln, die eine verbesserte Schwefelresistenz aufweisen“, sagt Opitz.

Grundlagen teilweise noch nicht erforscht

Der Bau metallgestützter Festoxidbrennstoffzellen ist sehr komplex - verschiedene Komponenten mit ganz unterschiedlichen chemischen Eigenschaften und Aufgaben müssen zusammenspielen. Durch die Einführung des Metallsubstrats musste der komplette Fertigungsprozess neu entwickelt werden, was sich letztlich im Betrieb auch auf das elektrochemische Verhalten der Zellen auswirkt. Viele der einzelnen Prozesse, die in so einer Brennstoffzelle ablaufen, sind heute noch nicht bis ins Detail verstanden. In der Industrie versucht man sie aufgrund von Erfahrungswerten zu optimieren, aber für echte, weitreichende Fortschritte braucht man ein fundamentales Verständnis dieser Vorgänge auf mikroskopischer Skala.

Das Forschungszentrum Jülich hat langjährige Erfahrung im Bau von Brennstoffzellen. An der TU Wien gibt es sehr weit fortgeschrittenes Know-How über die Untersuchung der verschiedenen chemischen Vorgänge an Elektroden. „Unsere Aufgabe an der TU Wien ist es, die elektrochemischen Grundlagen der in Festoxidbrennstoffzellen ablaufenden Prozesse weiter zu erforschen und neue Elektrodenmaterialien zu entwickeln, sodass die Kollegen in Jülich und die Industriepartner unsere Erkenntnisse nutzen und bessere Brennstoffzellen bauen können“, sagt Opitz.

Christian Doppler Labors: Wissenschaft und Unternehmen

Das Christian Doppler Labor für Grenzflächen in metallgestützten elektrochemischen Energiewandlern läuft bereits seit September 2014, nun wurde bei einer Eröffnungsfeier in Jülich der offizielle Startschuss gesetzt. In Christian Doppler Labors wird anwendungsorientierte Grundlagenforschung auf hohem Niveau betrieben, hervorragende WissenschafterInnen kooperieren dazu mit innovativen Unternehmen. Für die Förderung dieser Zusammenarbeit gilt die Christian Doppler Forschungsgesellschaft international als Best-Practice-Beispiel. Christian Doppler Labors werden von der öffentlichen Hand und den beteiligten Unternehmen gemeinsam finanziert. Wichtigster öffentlicher Fördergeber ist das österreichische Bundesministerium für Wissenschaft, Forschung und Wirtschaft (BMWFW).

Rückfragehinweis:
Dr. Alexander Opitz
Institut für Chemische Technologien und Analytik
Technische Universität Wien
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-15860
alexander.opitz@tuwien.ac.at

Weitere Informationen:

http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/cdlbrennstoffzelle/ weitere Fotos

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten