Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom, der aus dem Rauschen kommt

04.05.2015

In Computern entsteht jede Menge überschüssiger Wärme. Bauteile, die diese Energie auf sinnvolle Weise nutzen, wurden in der Theorie schon seit ein paar Jahren vorhergesagt. Physikern der Universität Würzburg ist es jetzt gelungen, solche Teile im Labor herzustellen.

Je kleiner und leistungsfähiger Rechenchips in Computern werden, desto mehr Wärme produzieren sie. Das sorgt zum einen für finanzielle Probleme, denn Kühlen kosten Geld.

Aus diesem Grund baut beispielsweise Google neue Serverfarmen gerne in nördlichen Breiten, etwa in Finnland, wo die arktische Kälte die Server quasi von alleine auf niedrigen Temperaturen hält. Zum anderen setzt eine übermäßige Hitzeentwicklung der fortschreitenden Miniaturisierung Grenzen und erschwert so die Entwicklung noch kleinerer und leistungsfähigerer Prozessoren.

Publikation in den Physical Review Letters

Dass sich diese Energie auf eine spezielle Weise dazu nutzen lassen könnte, Strom zu erzeugen, haben vor ein paar Jahren Physiker der Universität Genf theoretisch vorhergesagt. Jetzt ist es einem Team von Physikern an der Universität Würzburg gelungen, die Theorie in die Praxis umzusetzen.

Wissenschaftler am Lehrstuhl für Technische Physik unter Leitung der Professoren Lukas Worschech und Sven Höfling haben ein Bauteil hergestellt, das in der Lage ist, aus Wärmeunterschieden einen gleichgerichteten Strom zu produzieren. In der Fachzeitschrift Physical Review Letters haben die Wissenschaftler ihre Arbeit vorgestellt.

„Wir erzeugen mit unserem Bauteil aus zufälligen Bewegungen Energie“, erklärt Dr. Fabian Hartmann das zu Grunde liegende Prinzip. In diesem Fall geht es um Bewegungen von Elektronen in Strukturen, die nur wenige milliardstel Meter groß sind. Je größer die Fluktuationen in dieser Struktur sind, desto stärker sind die zufälligen Bewegungen – der Physiker spricht von „Rauschen“.

„Dort, wo die Hitze groß ist, finden wir ein hohes Rauschen. An den kälteren Stellen ist das Rauschen niedriger“, erklärt Hartmann. Die Kunst ist es nun, aus diesem Unterschied einen gleichgerichteten Strom zu produzieren.

Ein zweidimensionales Elektronengas

Im Gottfried-Landwehr-Labor für Nanotechnologie der Universität Würzburg haben die Physiker zu diesem Zweck eine Struktur „aufgebaut“, die im Fachjargon „Quantenpunkt“ heißt. Dafür haben sie auf einem Trägermaterial schichtweise eine Aluminium-Galliumarsenid-Heterostruktur aufgebracht, die nur wenige Mikrometer groß ist. Anschließend haben sie dort spezielle Strukturen hineingeätzt, in denen sich Elektronen bewegen können.

Allerdings ist der Spalt, der den Elektronen Platz bietet, gerade mal wenige Nanometer breit. So entsteht ein zweidimensionales Elektronengas, in dem die Bewegungsrichtungen stark eingeschränkt sind. „Damit erreichen wir eine sehr hohe Beweglichkeit von Elektronen auf einem definierten Raum ohne Streuprozesse“, schildert Hartmann das Ergebnis. Bringt man nun zwei solche Quantenpunkte unterschiedlicher Temperatur nah zusammen, tritt der gewünschte Effekt ein: Aus der zufälligen Bewegung, dem hohen Rauschen auf der einen Seite, entsteht auf der anderen Seite eine gerichtete Bewegung – ein Gleichstrom.

Besser als thermoelektrische Elemente

Natürlich war es auch bisher schon möglich, aus Temperaturunterschieden Energie in Form von Strom zu gewinnen. Sogenannte „Thermoelektrische Elemente“ sind dazu in der Lage. Das Spektrum der Möglichkeiten reicht von der Armbanduhr, die ihre Antriebsenergie aus der geringen Temperaturdifferenz zwischen der Umgebungsluft und der Körperwärme erhält, über thermoelektrische Aggregate, die die Abwärme aus dem Verbrennungsprozess im Automobil nutzen, bis zur Raumsonde Cassini, die die Zerfallswärme von Plutonium-238 in elektrische Energie umwandelt.

Aus Sicht der Physiker weisen thermoelektrische Elemente allerdings einen gravierenden Nachteil auf: „Bei ihnen sind Wärmestrom und elektrischer Strom gleichgerichtet“, erklärt Fabian Hartmann. Soll heißen: Während sie Strom produzieren, verringern diese Materialien automatisch die Temperaturdifferenz soweit, bis der Unterschied verschwunden ist. Womit dann auch kein Strom mehr fließen kann. „Bei unseren Bauelementen hingegen sind diese beiden Prozesse voneinander entkoppelt. Die Temperaturdifferenzen lässt sich somit leichter aufrecht erhalten“, so Hartmann.

Niedrige Energieausbeute mit Potenzial

Die Energieausbeute der Bauteile klingt für den Laien nach kaum mehr als Nichts. Rund 20 Picowatt betrage die Leistung eines solchen Elements, sagt der Physiker. 50 Milliarden von ihnen erzeugen gerade mal ein Watt. Ist die Entwicklung dieser Teile also reine Spielerei im Labor? Definitiv nicht, so Hartmann. Zum einen besitze ein heute gängiger Prozessor bereits mehr als eine Milliarde Transistoren, die alle Hitze produzieren. Zum anderen sei es ein Ziel seiner Arbeit, autonome Sensornetzwerke auf diese Weise mit Energie zu versorgen. Und dafür reichten bereits wenige Mikrowatt.

Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech. DOI: 10.1103/PhysRevLett.114.146805

Kontakt

Dr. Fabian Hartmann, Lehrstuhl für Technische Physik, T: (0931) 31-88579, E-Mail: fhartmann@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Hochauflösende IR Kamera mit Mikroskopoptik
23.10.2017 | Optris GmbH

nachricht »ILIGHTS«-Studie gestartet: Licht soll Wohlbefinden von Schichtarbeitern verbessern
18.10.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie