Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom, der aus dem Rauschen kommt

04.05.2015

In Computern entsteht jede Menge überschüssiger Wärme. Bauteile, die diese Energie auf sinnvolle Weise nutzen, wurden in der Theorie schon seit ein paar Jahren vorhergesagt. Physikern der Universität Würzburg ist es jetzt gelungen, solche Teile im Labor herzustellen.

Je kleiner und leistungsfähiger Rechenchips in Computern werden, desto mehr Wärme produzieren sie. Das sorgt zum einen für finanzielle Probleme, denn Kühlen kosten Geld.

Aus diesem Grund baut beispielsweise Google neue Serverfarmen gerne in nördlichen Breiten, etwa in Finnland, wo die arktische Kälte die Server quasi von alleine auf niedrigen Temperaturen hält. Zum anderen setzt eine übermäßige Hitzeentwicklung der fortschreitenden Miniaturisierung Grenzen und erschwert so die Entwicklung noch kleinerer und leistungsfähigerer Prozessoren.

Publikation in den Physical Review Letters

Dass sich diese Energie auf eine spezielle Weise dazu nutzen lassen könnte, Strom zu erzeugen, haben vor ein paar Jahren Physiker der Universität Genf theoretisch vorhergesagt. Jetzt ist es einem Team von Physikern an der Universität Würzburg gelungen, die Theorie in die Praxis umzusetzen.

Wissenschaftler am Lehrstuhl für Technische Physik unter Leitung der Professoren Lukas Worschech und Sven Höfling haben ein Bauteil hergestellt, das in der Lage ist, aus Wärmeunterschieden einen gleichgerichteten Strom zu produzieren. In der Fachzeitschrift Physical Review Letters haben die Wissenschaftler ihre Arbeit vorgestellt.

„Wir erzeugen mit unserem Bauteil aus zufälligen Bewegungen Energie“, erklärt Dr. Fabian Hartmann das zu Grunde liegende Prinzip. In diesem Fall geht es um Bewegungen von Elektronen in Strukturen, die nur wenige milliardstel Meter groß sind. Je größer die Fluktuationen in dieser Struktur sind, desto stärker sind die zufälligen Bewegungen – der Physiker spricht von „Rauschen“.

„Dort, wo die Hitze groß ist, finden wir ein hohes Rauschen. An den kälteren Stellen ist das Rauschen niedriger“, erklärt Hartmann. Die Kunst ist es nun, aus diesem Unterschied einen gleichgerichteten Strom zu produzieren.

Ein zweidimensionales Elektronengas

Im Gottfried-Landwehr-Labor für Nanotechnologie der Universität Würzburg haben die Physiker zu diesem Zweck eine Struktur „aufgebaut“, die im Fachjargon „Quantenpunkt“ heißt. Dafür haben sie auf einem Trägermaterial schichtweise eine Aluminium-Galliumarsenid-Heterostruktur aufgebracht, die nur wenige Mikrometer groß ist. Anschließend haben sie dort spezielle Strukturen hineingeätzt, in denen sich Elektronen bewegen können.

Allerdings ist der Spalt, der den Elektronen Platz bietet, gerade mal wenige Nanometer breit. So entsteht ein zweidimensionales Elektronengas, in dem die Bewegungsrichtungen stark eingeschränkt sind. „Damit erreichen wir eine sehr hohe Beweglichkeit von Elektronen auf einem definierten Raum ohne Streuprozesse“, schildert Hartmann das Ergebnis. Bringt man nun zwei solche Quantenpunkte unterschiedlicher Temperatur nah zusammen, tritt der gewünschte Effekt ein: Aus der zufälligen Bewegung, dem hohen Rauschen auf der einen Seite, entsteht auf der anderen Seite eine gerichtete Bewegung – ein Gleichstrom.

Besser als thermoelektrische Elemente

Natürlich war es auch bisher schon möglich, aus Temperaturunterschieden Energie in Form von Strom zu gewinnen. Sogenannte „Thermoelektrische Elemente“ sind dazu in der Lage. Das Spektrum der Möglichkeiten reicht von der Armbanduhr, die ihre Antriebsenergie aus der geringen Temperaturdifferenz zwischen der Umgebungsluft und der Körperwärme erhält, über thermoelektrische Aggregate, die die Abwärme aus dem Verbrennungsprozess im Automobil nutzen, bis zur Raumsonde Cassini, die die Zerfallswärme von Plutonium-238 in elektrische Energie umwandelt.

Aus Sicht der Physiker weisen thermoelektrische Elemente allerdings einen gravierenden Nachteil auf: „Bei ihnen sind Wärmestrom und elektrischer Strom gleichgerichtet“, erklärt Fabian Hartmann. Soll heißen: Während sie Strom produzieren, verringern diese Materialien automatisch die Temperaturdifferenz soweit, bis der Unterschied verschwunden ist. Womit dann auch kein Strom mehr fließen kann. „Bei unseren Bauelementen hingegen sind diese beiden Prozesse voneinander entkoppelt. Die Temperaturdifferenzen lässt sich somit leichter aufrecht erhalten“, so Hartmann.

Niedrige Energieausbeute mit Potenzial

Die Energieausbeute der Bauteile klingt für den Laien nach kaum mehr als Nichts. Rund 20 Picowatt betrage die Leistung eines solchen Elements, sagt der Physiker. 50 Milliarden von ihnen erzeugen gerade mal ein Watt. Ist die Entwicklung dieser Teile also reine Spielerei im Labor? Definitiv nicht, so Hartmann. Zum einen besitze ein heute gängiger Prozessor bereits mehr als eine Milliarde Transistoren, die alle Hitze produzieren. Zum anderen sei es ein Ziel seiner Arbeit, autonome Sensornetzwerke auf diese Weise mit Energie zu versorgen. Und dafür reichten bereits wenige Mikrowatt.

Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech. DOI: 10.1103/PhysRevLett.114.146805

Kontakt

Dr. Fabian Hartmann, Lehrstuhl für Technische Physik, T: (0931) 31-88579, E-Mail: fhartmann@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Dünnschichtphotovoltaik: ZSW-Technologie erobert den internationalen Markt
24.01.2017 | Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)

nachricht IT-Kühlung: So schaffen Kleinbetriebe den Sprung in die IT-Profiliga
23.09.2016 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie