Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strom, der aus dem Rauschen kommt

04.05.2015

In Computern entsteht jede Menge überschüssiger Wärme. Bauteile, die diese Energie auf sinnvolle Weise nutzen, wurden in der Theorie schon seit ein paar Jahren vorhergesagt. Physikern der Universität Würzburg ist es jetzt gelungen, solche Teile im Labor herzustellen.

Je kleiner und leistungsfähiger Rechenchips in Computern werden, desto mehr Wärme produzieren sie. Das sorgt zum einen für finanzielle Probleme, denn Kühlen kosten Geld.

Aus diesem Grund baut beispielsweise Google neue Serverfarmen gerne in nördlichen Breiten, etwa in Finnland, wo die arktische Kälte die Server quasi von alleine auf niedrigen Temperaturen hält. Zum anderen setzt eine übermäßige Hitzeentwicklung der fortschreitenden Miniaturisierung Grenzen und erschwert so die Entwicklung noch kleinerer und leistungsfähigerer Prozessoren.

Publikation in den Physical Review Letters

Dass sich diese Energie auf eine spezielle Weise dazu nutzen lassen könnte, Strom zu erzeugen, haben vor ein paar Jahren Physiker der Universität Genf theoretisch vorhergesagt. Jetzt ist es einem Team von Physikern an der Universität Würzburg gelungen, die Theorie in die Praxis umzusetzen.

Wissenschaftler am Lehrstuhl für Technische Physik unter Leitung der Professoren Lukas Worschech und Sven Höfling haben ein Bauteil hergestellt, das in der Lage ist, aus Wärmeunterschieden einen gleichgerichteten Strom zu produzieren. In der Fachzeitschrift Physical Review Letters haben die Wissenschaftler ihre Arbeit vorgestellt.

„Wir erzeugen mit unserem Bauteil aus zufälligen Bewegungen Energie“, erklärt Dr. Fabian Hartmann das zu Grunde liegende Prinzip. In diesem Fall geht es um Bewegungen von Elektronen in Strukturen, die nur wenige milliardstel Meter groß sind. Je größer die Fluktuationen in dieser Struktur sind, desto stärker sind die zufälligen Bewegungen – der Physiker spricht von „Rauschen“.

„Dort, wo die Hitze groß ist, finden wir ein hohes Rauschen. An den kälteren Stellen ist das Rauschen niedriger“, erklärt Hartmann. Die Kunst ist es nun, aus diesem Unterschied einen gleichgerichteten Strom zu produzieren.

Ein zweidimensionales Elektronengas

Im Gottfried-Landwehr-Labor für Nanotechnologie der Universität Würzburg haben die Physiker zu diesem Zweck eine Struktur „aufgebaut“, die im Fachjargon „Quantenpunkt“ heißt. Dafür haben sie auf einem Trägermaterial schichtweise eine Aluminium-Galliumarsenid-Heterostruktur aufgebracht, die nur wenige Mikrometer groß ist. Anschließend haben sie dort spezielle Strukturen hineingeätzt, in denen sich Elektronen bewegen können.

Allerdings ist der Spalt, der den Elektronen Platz bietet, gerade mal wenige Nanometer breit. So entsteht ein zweidimensionales Elektronengas, in dem die Bewegungsrichtungen stark eingeschränkt sind. „Damit erreichen wir eine sehr hohe Beweglichkeit von Elektronen auf einem definierten Raum ohne Streuprozesse“, schildert Hartmann das Ergebnis. Bringt man nun zwei solche Quantenpunkte unterschiedlicher Temperatur nah zusammen, tritt der gewünschte Effekt ein: Aus der zufälligen Bewegung, dem hohen Rauschen auf der einen Seite, entsteht auf der anderen Seite eine gerichtete Bewegung – ein Gleichstrom.

Besser als thermoelektrische Elemente

Natürlich war es auch bisher schon möglich, aus Temperaturunterschieden Energie in Form von Strom zu gewinnen. Sogenannte „Thermoelektrische Elemente“ sind dazu in der Lage. Das Spektrum der Möglichkeiten reicht von der Armbanduhr, die ihre Antriebsenergie aus der geringen Temperaturdifferenz zwischen der Umgebungsluft und der Körperwärme erhält, über thermoelektrische Aggregate, die die Abwärme aus dem Verbrennungsprozess im Automobil nutzen, bis zur Raumsonde Cassini, die die Zerfallswärme von Plutonium-238 in elektrische Energie umwandelt.

Aus Sicht der Physiker weisen thermoelektrische Elemente allerdings einen gravierenden Nachteil auf: „Bei ihnen sind Wärmestrom und elektrischer Strom gleichgerichtet“, erklärt Fabian Hartmann. Soll heißen: Während sie Strom produzieren, verringern diese Materialien automatisch die Temperaturdifferenz soweit, bis der Unterschied verschwunden ist. Womit dann auch kein Strom mehr fließen kann. „Bei unseren Bauelementen hingegen sind diese beiden Prozesse voneinander entkoppelt. Die Temperaturdifferenzen lässt sich somit leichter aufrecht erhalten“, so Hartmann.

Niedrige Energieausbeute mit Potenzial

Die Energieausbeute der Bauteile klingt für den Laien nach kaum mehr als Nichts. Rund 20 Picowatt betrage die Leistung eines solchen Elements, sagt der Physiker. 50 Milliarden von ihnen erzeugen gerade mal ein Watt. Ist die Entwicklung dieser Teile also reine Spielerei im Labor? Definitiv nicht, so Hartmann. Zum einen besitze ein heute gängiger Prozessor bereits mehr als eine Milliarde Transistoren, die alle Hitze produzieren. Zum anderen sei es ein Ziel seiner Arbeit, autonome Sensornetzwerke auf diese Weise mit Energie zu versorgen. Und dafür reichten bereits wenige Mikrowatt.

Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots. F. Hartmann, P. Pfeffer, S. Höfling, M. Kamp, and L. Worschech. DOI: 10.1103/PhysRevLett.114.146805

Kontakt

Dr. Fabian Hartmann, Lehrstuhl für Technische Physik, T: (0931) 31-88579, E-Mail: fhartmann@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH

nachricht Treiber für Digitalisierung von Industrieanlagen: ABB, HPE und Rittal stellen Secure Edge Data Center vor
20.04.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics