Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Streichbare Solarzellen entwickelt

22.12.2011
Forschungserfolge in den USA und Kanada gelungen

Forscher der University of Notre Dame haben eine Farbe entwickelt, die über leitfähigen Untergrund Strom aus Sonnenlicht erzeugen kann. Diese ist günstig herzustellen und ohne Spezial-Equipment auftragbar und soll eine Alternative zu Silizium-basierten Solarmodulen bieten. Auch in Kanada wird an einer ähnlichen Technologie gearbeitet. Saudi-Arabische Interessenten sprechen bereits von einem "Game Changer" in Sachen Energiegewinnung und fördern das Projekt der University of Toronto http://utoronto.ca mit zehn Mio. Dollar.


Sun-Believable: Farbe verwandelt Untergrund in Solarzelle (Foto: nd.edu)

Nanopartikel als Schlüssel
Das Geheimnis der Solarfarbe aus Notre Dame liegt in stromerzeugenden Nanopartikeln, sogenannten "Quantum Dots". Diese bestehen aus Titandioxid und sind zur Verbesserung des Stromflusses entweder mit Cadmiumsulfid oder Cadmiumselenid umhüllt. Sie sind integriert in einen streichbaren Stoffverbund.

"Wir wollten über die Siliziumtechnologie hinauskommen", sagt Prashant Kamat, Biochemiker am Nano-Wissenschafts- und Technologie-Institut der kanadischen Universität. Er ist Leiter des "Sun-Believable"-Projektes.

Effizienzgrad noch steigerungsbedürftig
Die entwickelte Paste wurde bereits erfolgreich getestet. Nach dem Auftragen auf ein durchsichtiges, leitfähiges Material konnte damit Energie erzeugt werden. "Der höchste von uns bisher erreichte Effizienzgrad beträgt einen Prozent und liegt damit klar hinter den zehn bis 15 Prozent kommerzieller Silizium-Solarzellen", schildert der Forscher gegenüber ScienceDaily.

"Die Farbe kann günstig in großen Mengen hergestellt werden. Wenn es uns gelingt, die Energieausbeute etwas zu steigern, könnten wir zukünftig einen wichtigen Beitrag zur Deckung des Strombedarfs leisten." Die Forschung unter wird vom US-Energieministerium finanziert.

Kanadisches Projekt erhält Finanzspritze
An streichbarer Photovoltaik-Technologie forscht auch Ted Sargent von der University of Toronto. Auch er setzt auf Quantum Dots. Diese werden zu einem kalkulierten Preis von 15 bis 20 Dollar pro Quadratmeter Streichfläche auf Glas-Wafern verteilt. Dem Vernehmen nach konnte hiermit bereits eine Stromausbeute von sechs Prozent realisiert werden. Die Nanopartikel sollen massenhaft hergestellt und an verschiedensten Oberflächen angebracht werden können.

Das Projekt erhielt kürzlich ein Backing in der Höhe von zehn Mio. Dollar (ca. 7,65 Mio. Euro) im Rahmen einer fünfjährigen Kooperation mit der König-Abdullah-Universität für Wissenschaft und Technologie in Thuwal. Die Zusammenarbeit läuft bereits seit 2008.

Dort sprechen Interessenten von einem "Game Changer" und erwarben die Lizenzrechte für die Nutzung der Technologie in 38 nordafrikanischen und asiatischen Ländern, darunter Indien, sowie Russland. Konkrete Pläne für kommerzielle Umsetzungen gibt es noch keine, da man auch hier noch den Fortschritt der Entwicklung abwarten muss.

Georg Pichler | pressetext.redaktion
Weitere Informationen:
http://www.nd.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Kompakte Rangierfelder für RJ45-Module
26.09.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Sicherungsklemmen für unterschiedliche Einsatzgebiete
18.09.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie