Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stapelaktor mit elektroaktiven Elastomeren dämpft Schwingungen und soll Energie gewinnen

27.10.2011
In stark schwingenden technischen Systemen müssen große Bewegungen ausgeglichen und gedämpft werden.

Klassischerweise geschieht dies mit Elastomerbauteilen. Wissenschaftler aus dem Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF haben sich gefragt, was wäre, wenn diese elastischen Komponenten intelligent wären und sich aktiv verformen könnten? Wenn sie Massen heben und zum Schwingen anregen könnten? Dann könnten sie viel effektiver störende Schwingungen bekämpfen, indem sie Gegenschwingungen erzeugen. Sie könnten auch aus den Schwingungen, die sie dämpfen, elektrische Energie gewinnen.


Ein Demonstrator des neuartigen Stapelaktors als CAD-Darstellung. Grafik: Fraunhofer LBF.

Die Darmstädter Forscher haben nun einen neuartigen Stapelaktor entwickelt, der die speziellen Eigenschaften der elektroaktiven Elastomere nutzt und völlig neue Anwendungsszenarien erschließt.

Das Ziel der Forscher: Mit Funktionswerkstoffen aktive Lösungen realisieren, um die Dämpfungscharakteristik zu verbessern und gleichzeitig den notwendigen Bauraum zu reduzieren. Besonders empfehlen sich hierfür elektroaktive Elastomere (EAE). Sie sind in den letzten Jahren ins Interesse von industriellen Anwendern gerückt. Bislang gibt es allerdings wenig kommerzielle Anbieter von fertigen EAE-Komponenten und die meisten Untersuchungen wurden mit manuell gefertigten Labormustern gemacht. Daher gilt es, standardisierte, zu-verlässige und für den industriellen Einsatz geeignete Systeme zu entwickeln.

Die Forscher des Fraunhofer LBF nutzen die speziellen Eigenschaften der elektroaktiven Elastomere, um einen neuartigen Stapelaktor zu designen. Ein Demonstrator zeigt das Potential dieses Ansatzes. Zurzeit wird am Aufbau eines größeren Systems gearbeitet.

Große Dehnung – geringe Kräfte
Wie Piezokeramiken gehören elektroaktive Elastomere zu den „smart materials“, die sich bei Anlegen eines elektrischen Feldes mechanisch verformen. Im Vergleich zu Piezowandlern zeichnen sich EAE-Wandler durch vergleichsweise große Dehnungen bei deutlich geringeren Kräften aus. Je nach eingesetztem Elastomermaterial ergeben sich unterschiedliche Kenngrößen. Die weit verbreiteten dielektrischen Silikone sind bezüglich Kraftaufbau und Dehnungsvermögen mit natürlichen Muskeln vergleichbar und werden daher oft als „artificial muscles“ bezeichnet.

In der Lösung des Fraunhofer LBF werden dünne, metallische Elektroden, die fein perforiert sind, zum Anlegen der elektrischen Spannung eingesetzt. Dadurch kann das Elastomer bei anliegendem elektrischem Feld lokal in diese Mulden entweichen, eine makroskopische Kompressibilität des Aufbaus ist gewährleistet. Durch die gute elektrische Leitfähigkeit der Elektroden können resistive Verluste weitgehend minimiert und der Aktor bei höheren Frequenzen betrieben werden.

Da die Elektroden dehnstarr sind, ist eine mechanische An-bindung an die umgebende Struktur ohne Leistungsverlust möglich. Über die Lochgeometrie und die Lage der Elektroden zueinander kann die Aktorperformance gezielt eingestellt und optimiert werden. Mit Hilfe von numerischen Modellen und diversen Optimierungsverfahren soll so eine für den jeweiligen Einsatz optimale Geometrie berechnet und gefertigt werden.

Vielfältige Einsatzmöglichkeiten
Ein solcher Wandler lässt sich prinzipiell nicht nur als Aktor nutzen, sondern auch als adaptive Steifigkeit, als Sensor- und Generatorelement. Bei Anlegen einer elektrischen Spannung kommt es aufgrund der größer werdenden Kontaktflächen zu einer Steifigkeitszunahme, die beispielweise zur Verstellung eines adaptiven Tilgers einsetzbar ist, aber auch zu einer deutlichen Zunahme der Kapazität, die sensorisch und auch generatorisch genutzt werden kann. Damit sind insbesondere Anwendungen im Bereich Energy-Harvesting mit kleinen Amplituden denkbar, wo mechanische Umgebungsenergie aus Vibrationen in elektrische Energie gewandelt wird. Aber auch große Bewegungen, wie sie beispielsweise von Meereswellen hervorgerufen werden, wollen die Forscher zur Energiegewinnung nutzen.

Der Demonstrator des Fraunhofer LBF hat 50 aktive Schichten mit je 140 Mikrometer Schichtdicke und einer Grundfläche von 60 x 60 Millimetern. Mit einer Ansteuerungsspannung von 1,5 Kilovolt sind quasistatische Dehnungen von mehreren Prozent möglich. Durch eine Reduktion der Schichtdicke ist eine zusätzliche Steigerung der Performance zu erwarten.

Anke Zeidler-Finsel | Fraunhofer-Institut
Weitere Informationen:
http://www.lbf.fhg.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie