Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnige Zukunft für Strom aus Plastik

12.10.2010
Wissenschaftler der Universität Bayreuth leiten ambitioniertes EU- Forschungsprojekt „LARGECELLS“ für die großflächige Anwendung organischer Photovoltaik

Die Vision von Professor Dr. Mukundan Thelakkat, Professor für Angewandte Funktionspolymere an der Universität Bayreuth, ist revolutionär: In zehn bis 20 Jahren sollen Halbleiter-Plastikfolien, die Sonnenenergie in elektrische Energie umwandeln, für wenig Geld im Baumarkt erhältlich sein.

Durch eine verbesserte Effizienz soll diese Photovoltaik-Technologie der nächsten Generation auf Basis von druckbaren Polymersolarzellen eine kostengünstige und großflächige Versorgung mit Sonnenenergie ermöglichen.

Damit es nicht bei der Vision bleibt, finanziert die Europäische Kommission seit Anfang September 2010 für die nächsten drei Jahre ein internationales Forschungsvorhaben mit 1,64 Millionen Euro. Am 14 . Oktober 2010 treffen sich die Wissenschaftler in München zum Kick-Off-Meeting für das Projekt. Unter der Leitung von Professor Dr. Thelakkat beteiligen sich vier akademische Partner und ein mittelständisches Unternehmen aus Dänemark, den Niederlanden und Israel, sowie ein Konsortium aus indischen Wissenschaftlern an dem „LARGECELLS“-Projekt (Large-area Organic and Hybrid Solar Cells). Die Bayerische Forschungsallianz übernimmt in „LARGECELLS“ das Projektmanagement. Durch diese erfolgreiche, gemeinsame EU-Projektentwicklung mit der BayFOR fließen etwa 600.000 Euro an Fördergeld aus Brüssel nach Bayern.

Fossile Brennstoffe werden immer knapper. Um die klimaschädliche Kohlendioxidbelastung zu reduzieren, brauchen wir erneuerbare Energiequellen. Hier spielt die Photovoltaik zur Erzeugung elektrischer Energie eine wichtige Rolle. Allerdings erfordert die Produktion starrer, anorganischer Photovoltaik-Elemente aus reinem Silizium einen hohen Energie- und Kostenaufwand. Eine Alternative stellt die organische Photovoltaik (OPV) dar, die auf Polymeren basiert. Diese „Plastiksolarzellen“ sind günstig und energieeffizient zu produzieren sowie flexibel einsetzbar, allerdings scheitert ihre großflächige Anwendung bis dato an ihrer vergleichsweise niedrigen Effizienz. Wenig erforscht sind bislang auch die Langzeitstabilität und Degradationsmechanismen polymerer Solarzellen, was ihren praktischen Einsatz erschwert.

„Der Energiebedarf ist weltweit enorm, insbesondere in Schwellenländern, die sich zurzeit rasch zu großen Industrienationen entwickeln“, sagt Professor Dr. Thelakkat. „Gefragt sind kostengünstige, umweltfreundliche Lösungen, die überall und flexibel einsetzbar sind, und Sonnenenergie auch da zur Verfügung stellen, wo die Infrastruktur Mängel aufweist. Diese Anforderungen kann die organische Photovoltaik erfüllen. Voraussetzung ist eine deutliche Verbesserung ihrer Effizienz und Langzeitstabilität, was wir mit unserer Forschungsarbeit erreichen möchten.“

Das Anfang September 2010 gestartete „LARGECELLS“-Projekt hat sich zum Ziel gesetzt, neue geeignete polymere Funktionsmaterialien für organische Photovoltaikzellen zu synthetisieren, um eine Verdoppelung der heute erreichbaren Effizienz zu erzielen. Hierzu wird das Potenzial sowohl von rein organischen Systemen als auch von Hybridmaterialien aus anorganischen und organischen Halbleitern erforscht. Konkrete Ziele sind die Entwicklung von Materialien mit verbesserter Bandlücke und optimierten Donor-Akzeptor-Systemen. Dafür wird die Morphologie der polymeren Schichten für die Photovoltaikzellen entsprechend angepasst. Die vielversprechendsten Materialien werden für ihre großflächige Anwendung in neuen, hochmodernen Herstellungsverfahren auf Basis von Roll-to-Roll-Prozessen weiter entwickelt. Die dänische Firma Mekoprint zeichnet für die technologische Realisierung des Projekts verantwortlich.

Die Stabilität und Degradationsmechanismen der neuen Solarzellen werden in der Negev-Wüste (Israel) und in Indien durch In- und Outdoor-Tests mittels beschleunigter Alterungsverfahren untersucht. Die Ergebnisse dieser unter realen Betriebsbedingungen statt- findenden Tests werden bei der weiteren Entwicklung optimierter Trägermaterialien berücksichtigt.

Durch gezielte Ausschreibungen im 7. Forschungsrahmenprogramm der EU wird die Zusammenarbeit mit bestimmten Ländern außerhalb der EU unterstützt. So nehmen fünf hochkarätige wissenschaftliche Institutionen aus Indien am LARGECELLS- Projekt teil. Die indischen Forscher werden im Bereich der Entwicklung neuer Materialien und Outdoor-Tests sehr eng mit ihren EU-Kollegen kooperieren. Darüber hinaus ist ein intensiver Austausch von Wissen und Personal vorgesehen: Wissenschaftler und Studenten auf beiden Seiten werden ihre Kollegen aus dem anderen Konsortium regelmäßig besuchen und so für einen optimalen Wissensaustausch und für wichtige Synergien in der Forschungsarbeit sorgen. Das indische Konsortium wird separat vom indischen Wissenschaftsministerium finanziert.

Ansprechpartner für die Presse:
Projektkoordinator:
Professor Dr. Mukundan Thelakkat
Angewandte Funktionspolymere
Universität Bayreuth
Telefon.: 0921/553108
E-Mail: mukundan.thelakkat@uni-bayreuth.de
Projektmanager:
Dr. Panteleimon Panagiotou
Wissenschaftlicher Referent
Bayerische Forschungsallianz GmbH
Tel.: 089-9901888-16
E-Mail: panagiotou@bayfor.org

Frank Schmälzle | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics