Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarzellen mit Nanostreifen

12.04.2017

Solarzellen aus Perowskiten erreichen inzwischen hohe Wirkungsgrade: Sie wandeln über 20 Prozent des einfallenden Lichts direkt in nutzbaren Strom um. Auf der Suche nach den zugrunde liegenden physikalischen Mechanismen haben Forscher am Karlsruher Institut für Technologie (KIT) nun in Perowskit-Schichten streifenförmige Nanostrukturen mit sich abwechselnden elektrischen Feldern nachgewiesen, die als Transportpfade für Ladungen dienen könnten. Darüber berichten sie im Journal Energy & Environmental Science. (DOI: 10.1039/c7ee00420f)

Die von den Karlsruher Forschern verwendeten Perowskite sind metallorganische Verbindungen mit spezieller Kristallstruktur und hervorragenden photovoltaischen Eigenschaften. So haben Perowskit-Solarzellen seit ihrer Entdeckung 2009 eine rasante Entwicklung durchlaufen und erreichen inzwischen Wirkungsgrade von über 20 Prozent.


Die streifenförmigen Nanostrukturen in Perowskit-Solarzellen lassen sich mithilfe einer Form der Rasterkraftmikroskopie (schematisch dargestellt) nachweisen.

Abbildung: Holger Röhm, Tobias Leonhard/KIT

Dies macht sie zu einer der vielversprechendsten Photovoltaik-Technologien. Die Forschung an Perowskit-Solarzellen steht allerdings noch vor zwei Herausforderungen: die lichtabsorbierenden Schichten robuster gegen Umwelteinflüsse zu machen sowie das darin enthaltene Schwermetall Blei durch umweltfreundlichere Elemente zu ersetzen. Dazu bedarf es tieferer Einblicke in die physikalischen Mechanismen, die es ermöglichen, dass Perowskite einen so hohen Anteil der absorbierten Solarenergie in elektrische Energie umwandeln.

Ein multidisziplinäres Team von Forschern des KIT um Dr. Alexander Colsmann, Leiter der Arbeitsgruppe Organische Photovoltaik am Lichttechnischen Institut (LTI) und am Materialwissenschaftlichen Zentrum für Energiesysteme (MZE), hat nun Perowskit-Solarzellen mithilfe der Piezoresponse Force Microscopy, einer besonderen Rasterkraft-Mikroskopietechnik, vermessen und dabei in den lichtabsorbierenden Schichten ferroelektrische Nanostrukturen nachgewiesen. Ferroelektrizität bedeutet, dass Kristalle eine elektrische Polarisation besitzen.

Dabei bilden die ferroelektrischen Kristalle Bereiche mit gleicher Polarisationsrichtung, sogenannte Domänen. Die Karlsruher Wissenschaftler beobachteten, dass der Bleihalogenid-Perowskit während der Entstehung dünner Schichten rund 100 Nanometer breite streifenförmige ferroelektrische Domänen mit sich abwechselnden elektrischen Feldern bildet. Diese alternierende elektrische Polarisation im Material könnte eine entscheidende Rolle beim Transport der photogenerierten Ladungen aus der Solarzelle heraus spielen und somit die besonderen Eigenschaften der Perowskite in der Photovoltaik erklären.

„Die ferroelektrischen Strukturen in der Größe von wenigen zehn Nanometern könnten nahezu perfekt getrennte Transportpfade für Ladungen in der Solarzelle bilden“, erklärt Alexander Colsmann. Nach derartigen Strukturen suchen Forscher schon seit Jahren, um den Wirkungsgrad von Solarzellen zu verbessern. „In Perowskit-Solarzellen entstehen diese Strukturen unter gewissen Bedingungen offensichtlich von selbst“, sagt Professor Michael J. Hoffmann, Leiter des Instituts für Angewandte Materialien – Keramische Werkstoffe und Technologien (IAM-KWT) des KIT.

Er kennt ähnliche ferroelektrische Strukturen aus der Keramikforschung. Theoretische Arbeiten anderer Forscher hatten diese vorteilhaften Nanostrukturen zuvor bereits vorhergesagt. Bisher war der Nachweis jedoch ausgeblieben. Die Wissenschaftler des KIT untersuchten die Ferroelektrizität von Bleihalogenid-Perowskiten im Rahmen des von der Baden-Württemberg Stiftung finanzierten Projekts „NanoSolar“. Ihre Ergebnisse veröffentlichten sie in der renommierten Zeitschrift Energy & Environmental Science.

Holger Röhm, Tobias Leonhard, Michael J. Hoffmann and Alexan¬der Colsmann: Ferroelectric domains in methylammonium lead iodide perovskite thin-films. Energy & Environmental Science, 2017 (DOI: 10.1039/c7ee00420f)

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Weiterer Kontakt:
Kosta Schinarakis, Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, margarete.lehne@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie