Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblick in der Optoelektronik: Diode aus 2D-Material ermöglicht optimierte Solarzellen

10.03.2014

Erstmals ist es gelungen, einen speziellen Dioden-Typ aus kristallinem Material mit einer Schichtdicke von nur drei Atomen herzustellen.

Die überragenden Eigenschaften solcher ultra-dünnen Kristalle eröffnen dabei ungeahnte Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden. Die jetzt in Nature Nanotechnology veröffentlichte Arbeit belegt dabei nicht nur die eigentliche Funktionalität einer sogenannten p-n-Diode aus Wolframdiselenid, sondern demonstriert bereits ihre Verwendbarkeit für zahlreiche Anwendungen. Diese Ergebnisse eines Projekts des FWF stellen einen signifikanten Fortschritt auf dem zukünftigen Weg zur 2D-Optoelektronik dar.


Ein 2D-Material bietet ungeahnte Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden

Für redaktionelle Zwecke bei Nennung der Quelle kostenfrei: © Florian Aigner (TU Wien)

Elektronische Geräte benötigen Halbleiter. Hergestellt werden diese meist aus kristallinem Silizium. State of the Art ist dabei die Verwendung dreidimensionaler Kristalle, die jedoch geringe Flexibilität mit hohem Gewicht vereinen – und zusätzlich teuer herzustellen sind. Alternative Ansätze – organische Halbleiter und Dünnfilmtechnologien – resultieren wiederum in Materialien mit minderer Qualität und Haltbarkeit. Bessere Erfolgsaussichten bieten zweidimensionale (2D-)Kristalle – kristalline Materialschichten mit einer Dicke von nur einem oder wenigen Atomen. Sie können günstig flächig hergestellt werden und sind flexibel, zeigen aber trotzdem alle Vorteile kristallinen Materials. Jetzt ist es einem Team des Instituts für Photonik der Technischen Universität Wien erstmals gelungen, eine Diode mit p-n-Übergang aus solchen 2D-Kristallen zu produzieren – und damit die Grundlage für einen Umbruch in der Optoelektronik zu legen.

Ergebnis mit Lücke

Das Ausgangsmaterial des Teams um Prof. Thomas Müller war dabei Wolframdiselenid (WSe2). Dieses hat im Vergleich zum derzeit wohl bekanntesten 2D-kristallinen Material, Graphen, einen entscheidenden Vorteil, wie Prof. Müller erläutert: "Wolframdiselenid hat eine Bandlücke – Elektronen benötigen also eine gewisse Energie, um in das Leitungsband überzutreten. Diese Grundvoraussetzung für viele elektronische Bauelemente kann Graphen nicht so einfach bieten." Damit WSe2 für die weitere Arbeit des Teams tatsächlich in Form einer 2D-Schicht vorlag, wurde es von dreidimensionalen Kristallen mechanisch so "abgeschält", dass Schichten von nur 0,7 Nanometer Dicke entstanden. Dazu Prof. Müller: "Wir kontrollierten anschließend mit aufwendigen Verfahren, dass uns tatsächlich 2D-Kristalle gelungen waren. Denn nur solch dünne Schichten weisen die geforderten Eigenschaften auf." Spektroskopische Analysen, optische Kontrastbestimmungen und Rasterkraftmikroskopie bestätigten das gewünschte Ergebnis. Das einschichtige WSe2 wurde dann zwischen zwei Elektroden platziert und das elektrische Verhalten näher bestimmt. Dabei konnte die Funktion als p-n-Diode eindeutig belegt werden: Sowohl positive (p, Löcher) als auch negative (n, Elektronen) Ladungen konnten injiziert werden, wobei die Stromleitung, wie in einer Diode üblich, ausschließlich in eine Richtung erfolgte.

Dünner Erfolg

"WSe2 in einschichtig kristalliner Form ist theoretisch ein ideales Ausgangsmaterial für p-n-Dioden und die Optoelektronik – nur bewiesen hat das noch niemand. Genau das haben wir nun getan. So konnten wir eine Effizienz von 0,5 Prozent bei der Umwandlung von Licht- in elektrische Energie messen", erläutert Prof. Müller die weltweit erste Demonstration der photovoltaischen Eigenschaften eines 2D-kristallinen Materials. Die hohe Transparenz von 95 Prozent macht dabei sogar den gleichzeitigen Einsatz als Fensterglas und Solarzelle möglich. Es können aber auch mehrere solcher ultra-dünnen Schichten übereinander gepackt werden, um so die Effizienz – natürlich auf Kosten der Transparenz – auf bis zu 10 Prozent zu steigern.

Auch die Funktionalität als Photodiode wurde nachgewiesen und dabei eine um eine Größenordnung höhere Empfindlichkeit erreicht, als sie Graphen aufweist. Ergänzt werden diese Eigenschaften durch die Fähigkeit, elektrische Energie in Licht umzuwandeln.

Insgesamt belegen die Ergebnisse dieses FWF-Projekts beeindruckend, dass WSe2 überragende optoelektronische Eigenschaften besitzt, die neue Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden schaffen.

Originalpublikation: A. Pospischil, M. M. Furchi, und T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nature Nanotechnology (2014), http://dx.doi.org/10.1038/nnano.2014.14


Wissenschaftlicher Kontakt
Prof. Thomas Müller
Technische Universität Wien
Institut für Photonik
Gußhausstraße 27-29/E387
1040 Wien
T +43 / 1 / 588 01 - 38739
E thomas.mueller@tuwien.ac.at

Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / (0)1 / 505 67 40 - 8111

Redaktion & Aussendung
PR&D - Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Mag. Stefan Bernhardt | PR&D - Public Relations für Forschung & Bildung
Weitere Informationen:
http://www.fwf.ac.at/de/public_relations/press/pv201403-de.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wie Protonen durch eine Brennstoffzelle wandern
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Omicron Diodenlaser mit höherer Ausgangsleistung und erweiterter Garantie
20.06.2017 | Omicron - Laserage Laserprodukte GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Im Focus: Forscher entschlüsseln erstmals intaktes Virus atomgenau mit Röntgenlaser

Bahnbrechende Untersuchungsmethode beschleunigt Proteinanalyse um ein Vielfaches

Ein internationales Forscherteam hat erstmals mit einem Röntgenlaser die atomgenaue Struktur eines intakten Viruspartikels entschlüsselt. Die verwendete...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

Forschung zu Stressbewältigung wird diskutiert

21.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Individualisierte Faserkomponenten für den Weltmarkt

22.06.2017 | Physik Astronomie

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017 | Biowissenschaften Chemie

Spinflüssigkeiten – zurück zu den Anfängen

22.06.2017 | Physik Astronomie