Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblick in der Optoelektronik: Diode aus 2D-Material ermöglicht optimierte Solarzellen

10.03.2014

Erstmals ist es gelungen, einen speziellen Dioden-Typ aus kristallinem Material mit einer Schichtdicke von nur drei Atomen herzustellen.

Die überragenden Eigenschaften solcher ultra-dünnen Kristalle eröffnen dabei ungeahnte Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden. Die jetzt in Nature Nanotechnology veröffentlichte Arbeit belegt dabei nicht nur die eigentliche Funktionalität einer sogenannten p-n-Diode aus Wolframdiselenid, sondern demonstriert bereits ihre Verwendbarkeit für zahlreiche Anwendungen. Diese Ergebnisse eines Projekts des FWF stellen einen signifikanten Fortschritt auf dem zukünftigen Weg zur 2D-Optoelektronik dar.


Ein 2D-Material bietet ungeahnte Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden

Für redaktionelle Zwecke bei Nennung der Quelle kostenfrei: © Florian Aigner (TU Wien)

Elektronische Geräte benötigen Halbleiter. Hergestellt werden diese meist aus kristallinem Silizium. State of the Art ist dabei die Verwendung dreidimensionaler Kristalle, die jedoch geringe Flexibilität mit hohem Gewicht vereinen – und zusätzlich teuer herzustellen sind. Alternative Ansätze – organische Halbleiter und Dünnfilmtechnologien – resultieren wiederum in Materialien mit minderer Qualität und Haltbarkeit. Bessere Erfolgsaussichten bieten zweidimensionale (2D-)Kristalle – kristalline Materialschichten mit einer Dicke von nur einem oder wenigen Atomen. Sie können günstig flächig hergestellt werden und sind flexibel, zeigen aber trotzdem alle Vorteile kristallinen Materials. Jetzt ist es einem Team des Instituts für Photonik der Technischen Universität Wien erstmals gelungen, eine Diode mit p-n-Übergang aus solchen 2D-Kristallen zu produzieren – und damit die Grundlage für einen Umbruch in der Optoelektronik zu legen.

Ergebnis mit Lücke

Das Ausgangsmaterial des Teams um Prof. Thomas Müller war dabei Wolframdiselenid (WSe2). Dieses hat im Vergleich zum derzeit wohl bekanntesten 2D-kristallinen Material, Graphen, einen entscheidenden Vorteil, wie Prof. Müller erläutert: "Wolframdiselenid hat eine Bandlücke – Elektronen benötigen also eine gewisse Energie, um in das Leitungsband überzutreten. Diese Grundvoraussetzung für viele elektronische Bauelemente kann Graphen nicht so einfach bieten." Damit WSe2 für die weitere Arbeit des Teams tatsächlich in Form einer 2D-Schicht vorlag, wurde es von dreidimensionalen Kristallen mechanisch so "abgeschält", dass Schichten von nur 0,7 Nanometer Dicke entstanden. Dazu Prof. Müller: "Wir kontrollierten anschließend mit aufwendigen Verfahren, dass uns tatsächlich 2D-Kristalle gelungen waren. Denn nur solch dünne Schichten weisen die geforderten Eigenschaften auf." Spektroskopische Analysen, optische Kontrastbestimmungen und Rasterkraftmikroskopie bestätigten das gewünschte Ergebnis. Das einschichtige WSe2 wurde dann zwischen zwei Elektroden platziert und das elektrische Verhalten näher bestimmt. Dabei konnte die Funktion als p-n-Diode eindeutig belegt werden: Sowohl positive (p, Löcher) als auch negative (n, Elektronen) Ladungen konnten injiziert werden, wobei die Stromleitung, wie in einer Diode üblich, ausschließlich in eine Richtung erfolgte.

Dünner Erfolg

"WSe2 in einschichtig kristalliner Form ist theoretisch ein ideales Ausgangsmaterial für p-n-Dioden und die Optoelektronik – nur bewiesen hat das noch niemand. Genau das haben wir nun getan. So konnten wir eine Effizienz von 0,5 Prozent bei der Umwandlung von Licht- in elektrische Energie messen", erläutert Prof. Müller die weltweit erste Demonstration der photovoltaischen Eigenschaften eines 2D-kristallinen Materials. Die hohe Transparenz von 95 Prozent macht dabei sogar den gleichzeitigen Einsatz als Fensterglas und Solarzelle möglich. Es können aber auch mehrere solcher ultra-dünnen Schichten übereinander gepackt werden, um so die Effizienz – natürlich auf Kosten der Transparenz – auf bis zu 10 Prozent zu steigern.

Auch die Funktionalität als Photodiode wurde nachgewiesen und dabei eine um eine Größenordnung höhere Empfindlichkeit erreicht, als sie Graphen aufweist. Ergänzt werden diese Eigenschaften durch die Fähigkeit, elektrische Energie in Licht umzuwandeln.

Insgesamt belegen die Ergebnisse dieses FWF-Projekts beeindruckend, dass WSe2 überragende optoelektronische Eigenschaften besitzt, die neue Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden schaffen.

Originalpublikation: A. Pospischil, M. M. Furchi, und T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nature Nanotechnology (2014), http://dx.doi.org/10.1038/nnano.2014.14


Wissenschaftlicher Kontakt
Prof. Thomas Müller
Technische Universität Wien
Institut für Photonik
Gußhausstraße 27-29/E387
1040 Wien
T +43 / 1 / 588 01 - 38739
E thomas.mueller@tuwien.ac.at

Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / (0)1 / 505 67 40 - 8111

Redaktion & Aussendung
PR&D - Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Mag. Stefan Bernhardt | PR&D - Public Relations für Forschung & Bildung
Weitere Informationen:
http://www.fwf.ac.at/de/public_relations/press/pv201403-de.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

nachricht Flüssiger Treibstoff für künftige Computer
15.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen