Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichtblick in der Optoelektronik: Diode aus 2D-Material ermöglicht optimierte Solarzellen

10.03.2014

Erstmals ist es gelungen, einen speziellen Dioden-Typ aus kristallinem Material mit einer Schichtdicke von nur drei Atomen herzustellen.

Die überragenden Eigenschaften solcher ultra-dünnen Kristalle eröffnen dabei ungeahnte Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden. Die jetzt in Nature Nanotechnology veröffentlichte Arbeit belegt dabei nicht nur die eigentliche Funktionalität einer sogenannten p-n-Diode aus Wolframdiselenid, sondern demonstriert bereits ihre Verwendbarkeit für zahlreiche Anwendungen. Diese Ergebnisse eines Projekts des FWF stellen einen signifikanten Fortschritt auf dem zukünftigen Weg zur 2D-Optoelektronik dar.


Ein 2D-Material bietet ungeahnte Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden

Für redaktionelle Zwecke bei Nennung der Quelle kostenfrei: © Florian Aigner (TU Wien)

Elektronische Geräte benötigen Halbleiter. Hergestellt werden diese meist aus kristallinem Silizium. State of the Art ist dabei die Verwendung dreidimensionaler Kristalle, die jedoch geringe Flexibilität mit hohem Gewicht vereinen – und zusätzlich teuer herzustellen sind. Alternative Ansätze – organische Halbleiter und Dünnfilmtechnologien – resultieren wiederum in Materialien mit minderer Qualität und Haltbarkeit. Bessere Erfolgsaussichten bieten zweidimensionale (2D-)Kristalle – kristalline Materialschichten mit einer Dicke von nur einem oder wenigen Atomen. Sie können günstig flächig hergestellt werden und sind flexibel, zeigen aber trotzdem alle Vorteile kristallinen Materials. Jetzt ist es einem Team des Instituts für Photonik der Technischen Universität Wien erstmals gelungen, eine Diode mit p-n-Übergang aus solchen 2D-Kristallen zu produzieren – und damit die Grundlage für einen Umbruch in der Optoelektronik zu legen.

Ergebnis mit Lücke

Das Ausgangsmaterial des Teams um Prof. Thomas Müller war dabei Wolframdiselenid (WSe2). Dieses hat im Vergleich zum derzeit wohl bekanntesten 2D-kristallinen Material, Graphen, einen entscheidenden Vorteil, wie Prof. Müller erläutert: "Wolframdiselenid hat eine Bandlücke – Elektronen benötigen also eine gewisse Energie, um in das Leitungsband überzutreten. Diese Grundvoraussetzung für viele elektronische Bauelemente kann Graphen nicht so einfach bieten." Damit WSe2 für die weitere Arbeit des Teams tatsächlich in Form einer 2D-Schicht vorlag, wurde es von dreidimensionalen Kristallen mechanisch so "abgeschält", dass Schichten von nur 0,7 Nanometer Dicke entstanden. Dazu Prof. Müller: "Wir kontrollierten anschließend mit aufwendigen Verfahren, dass uns tatsächlich 2D-Kristalle gelungen waren. Denn nur solch dünne Schichten weisen die geforderten Eigenschaften auf." Spektroskopische Analysen, optische Kontrastbestimmungen und Rasterkraftmikroskopie bestätigten das gewünschte Ergebnis. Das einschichtige WSe2 wurde dann zwischen zwei Elektroden platziert und das elektrische Verhalten näher bestimmt. Dabei konnte die Funktion als p-n-Diode eindeutig belegt werden: Sowohl positive (p, Löcher) als auch negative (n, Elektronen) Ladungen konnten injiziert werden, wobei die Stromleitung, wie in einer Diode üblich, ausschließlich in eine Richtung erfolgte.

Dünner Erfolg

"WSe2 in einschichtig kristalliner Form ist theoretisch ein ideales Ausgangsmaterial für p-n-Dioden und die Optoelektronik – nur bewiesen hat das noch niemand. Genau das haben wir nun getan. So konnten wir eine Effizienz von 0,5 Prozent bei der Umwandlung von Licht- in elektrische Energie messen", erläutert Prof. Müller die weltweit erste Demonstration der photovoltaischen Eigenschaften eines 2D-kristallinen Materials. Die hohe Transparenz von 95 Prozent macht dabei sogar den gleichzeitigen Einsatz als Fensterglas und Solarzelle möglich. Es können aber auch mehrere solcher ultra-dünnen Schichten übereinander gepackt werden, um so die Effizienz – natürlich auf Kosten der Transparenz – auf bis zu 10 Prozent zu steigern.

Auch die Funktionalität als Photodiode wurde nachgewiesen und dabei eine um eine Größenordnung höhere Empfindlichkeit erreicht, als sie Graphen aufweist. Ergänzt werden diese Eigenschaften durch die Fähigkeit, elektrische Energie in Licht umzuwandeln.

Insgesamt belegen die Ergebnisse dieses FWF-Projekts beeindruckend, dass WSe2 überragende optoelektronische Eigenschaften besitzt, die neue Möglichkeiten für Solarzellen, Photodioden und Leuchtdioden schaffen.

Originalpublikation: A. Pospischil, M. M. Furchi, und T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p-n diode, Nature Nanotechnology (2014), http://dx.doi.org/10.1038/nnano.2014.14


Wissenschaftlicher Kontakt
Prof. Thomas Müller
Technische Universität Wien
Institut für Photonik
Gußhausstraße 27-29/E387
1040 Wien
T +43 / 1 / 588 01 - 38739
E thomas.mueller@tuwien.ac.at

Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / (0)1 / 505 67 40 - 8111

Redaktion & Aussendung
PR&D - Public Relations für Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Mag. Stefan Bernhardt | PR&D - Public Relations für Forschung & Bildung
Weitere Informationen:
http://www.fwf.ac.at/de/public_relations/press/pv201403-de.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie