Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SolarWinS: Grundlagenforschung für Solarzellen

08.04.2011
Physiker der Universität Göttingen beteiligen sich an Verbundprojekt – Förderung durch BMU

Solarzellen so zu optimieren, dass Sonnenenergie effizienter und kostengünstiger genutzt werden kann – das ist das Ziel eines internationalen Verbundprojekts mit Beteiligung der Universität Göttingen. Die Forscher beschäftigen sich mit den Auswirkungen von Defekten in Siliziumkristallen sowie mit deren Wechselwirkungen.


Ortsaufgelöste Messung des Stroms einer Solarzelle unter Beleuchtung. In dem fünf mal fünf Millimeter großen Bereich sind Kontakte (schwarze Balken) sowie dunkle Bereiche gezeigt, in denen die erzeugte elektrische Leistung reduziert ist. Der weiße Kreis markiert einen besonders schädlichen Defekt. Foto: Uni Göttingen


Atomar aufgelöste Elektronenmikroskopaufnahme des in der oberen Abbildung markierten Defektes. Es handelt sich um eine Zwillingsgrenze mit eingelagerten Kohlenstoffatomen. Der Vergrößerungsfaktor zwischen den beiden Abbildungen beträgt etwa 600.000. Foto: Uni Göttingen

Die Defekte führen dazu, dass ein Teil des aus Sonnenlicht erzeugten Stroms wieder verloren geht. Die Wissenschaftler der Göttinger Fakultät für Physik kooperieren bei dem Projekt mit Forschern in den USA und in Russland. Das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) fördert das „Solarforschungscluster zur Ermittlung des maximalen Wirkungsgradniveaus von multikristallinem Silicium (SolarWinS)“ drei Jahre lang mit 6,5 Millionen Euro, davon fließen rund 860.000 Euro in das Göttinger Teilprojekt.

Um Sonnenlicht in elektrische Energie umzuwandeln, stehen heutzutage verschiedene Halbleitermaterialien zur Verfügung, darunter vor allem kristallines Silizium, das einen Marktanteil von mehr als 85 Prozent besitzt. Die effiziente und kostengünstige Nutzung der Sonnenenergie erfordert ein weitgehendes und grundlegendes Verständnis der physikalischen Eigenschaften der eingesetzten Materialien: Denn es sind insbesondere die Kristalldefekte, also die Abweichungen von der perfekten Kristallstruktur, durch die ein Teil des erzeugten Stroms wieder verloren geht.

Mit spektroskopischen und atomar aufgelösten mikroskopischen Methoden wollen die Göttinger Wissenschaftler diejenigen Defekte analysieren, die unter anderem den Wirkungsgrad der Solarzellen begrenzen. Der Einsatz atomarer Simulationen des Defektverhaltens stellt dabei einen ganz neuen Ansatz auf diesem Forschungsgebiet dar. Die Göttinger Physiker kooperieren eng mit Forschern der amerikanischen University of Pennsylvania und dem Institut für Festkörperphysik der Russischen Akademie der Wissenschaften in Tschernogolowka.

Das Göttinger Teilprojekt wird geleitet von Prof. Dr. Michael Seibt vom IV. Physikalischen Institut. Es trägt den Titel „Defektwechselwirkungen bei der Herstellung und Prozessierung von multikristallinem Silicium: Simulationen und Experimente“. Insgesamt sind zwölf deutsche und eine amerikanische Arbeitsgruppe sowie mehrere deutsche Unternehmen der Solarbranche an dem Verbundprojekt beteiligt.

Kontaktadresse:
Prof. Dr. Michael Seibt
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4553, Fax (0551) 39-4560
E-Mail: seibt@ph4.physik.uni-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.ph4.physik.uni-goettingen.de
http://www.uni-goettingen.de/de/3240.html?cid=3832

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie