Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SolarWinS: Grundlagenforschung für Solarzellen

08.04.2011
Physiker der Universität Göttingen beteiligen sich an Verbundprojekt – Förderung durch BMU

Solarzellen so zu optimieren, dass Sonnenenergie effizienter und kostengünstiger genutzt werden kann – das ist das Ziel eines internationalen Verbundprojekts mit Beteiligung der Universität Göttingen. Die Forscher beschäftigen sich mit den Auswirkungen von Defekten in Siliziumkristallen sowie mit deren Wechselwirkungen.


Ortsaufgelöste Messung des Stroms einer Solarzelle unter Beleuchtung. In dem fünf mal fünf Millimeter großen Bereich sind Kontakte (schwarze Balken) sowie dunkle Bereiche gezeigt, in denen die erzeugte elektrische Leistung reduziert ist. Der weiße Kreis markiert einen besonders schädlichen Defekt. Foto: Uni Göttingen


Atomar aufgelöste Elektronenmikroskopaufnahme des in der oberen Abbildung markierten Defektes. Es handelt sich um eine Zwillingsgrenze mit eingelagerten Kohlenstoffatomen. Der Vergrößerungsfaktor zwischen den beiden Abbildungen beträgt etwa 600.000. Foto: Uni Göttingen

Die Defekte führen dazu, dass ein Teil des aus Sonnenlicht erzeugten Stroms wieder verloren geht. Die Wissenschaftler der Göttinger Fakultät für Physik kooperieren bei dem Projekt mit Forschern in den USA und in Russland. Das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) fördert das „Solarforschungscluster zur Ermittlung des maximalen Wirkungsgradniveaus von multikristallinem Silicium (SolarWinS)“ drei Jahre lang mit 6,5 Millionen Euro, davon fließen rund 860.000 Euro in das Göttinger Teilprojekt.

Um Sonnenlicht in elektrische Energie umzuwandeln, stehen heutzutage verschiedene Halbleitermaterialien zur Verfügung, darunter vor allem kristallines Silizium, das einen Marktanteil von mehr als 85 Prozent besitzt. Die effiziente und kostengünstige Nutzung der Sonnenenergie erfordert ein weitgehendes und grundlegendes Verständnis der physikalischen Eigenschaften der eingesetzten Materialien: Denn es sind insbesondere die Kristalldefekte, also die Abweichungen von der perfekten Kristallstruktur, durch die ein Teil des erzeugten Stroms wieder verloren geht.

Mit spektroskopischen und atomar aufgelösten mikroskopischen Methoden wollen die Göttinger Wissenschaftler diejenigen Defekte analysieren, die unter anderem den Wirkungsgrad der Solarzellen begrenzen. Der Einsatz atomarer Simulationen des Defektverhaltens stellt dabei einen ganz neuen Ansatz auf diesem Forschungsgebiet dar. Die Göttinger Physiker kooperieren eng mit Forschern der amerikanischen University of Pennsylvania und dem Institut für Festkörperphysik der Russischen Akademie der Wissenschaften in Tschernogolowka.

Das Göttinger Teilprojekt wird geleitet von Prof. Dr. Michael Seibt vom IV. Physikalischen Institut. Es trägt den Titel „Defektwechselwirkungen bei der Herstellung und Prozessierung von multikristallinem Silicium: Simulationen und Experimente“. Insgesamt sind zwölf deutsche und eine amerikanische Arbeitsgruppe sowie mehrere deutsche Unternehmen der Solarbranche an dem Verbundprojekt beteiligt.

Kontaktadresse:
Prof. Dr. Michael Seibt
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4553, Fax (0551) 39-4560
E-Mail: seibt@ph4.physik.uni-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.ph4.physik.uni-goettingen.de
http://www.uni-goettingen.de/de/3240.html?cid=3832

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Power-to-Liquid: 200 Liter Sprit aus Solarstrom und dem Kohlenstoffdioxid der Umgebungsluft
24.07.2017 | Karlsruher Institut für Technologie

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie