Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solartechnik: Forschende lösen Rätsel um mysteriöses Quantenphänomen

30.10.2015

Mechanismus könnte Effizienz von Solarzellen verdoppeln

Ein internationales Team von Forschenden der Universitäten Cambridge, Lund und Kiel sowie des Forschungsinstitutes AMOLF in Amsterdam haben erstmals die sogenannte Singulett-Spaltung in Echtzeit beobachtet und aufgeklärt. Das Phänomen könnte bei der Entwicklung von hoch-effizienten Solarzellen helfen.


Forschende haben einen quantenmechanischen Mechanismus entschlüsselt, der Solarzellen doppelt so effektiv machen könnte.

Foto: AWA, www.flickr.com/photos/rainchurch/

Lizenz: CC BY-SA 2.0


Schrödingers Paradoxon bildlich dargestellt: Mit Hilfe der Quantenmechanik haben Forschende ein 50 Jahre altes Rätsel gelöst.

Robert Couse-Baker, www.flickr.com/photos/29233640@N07/

Lizenz: CC BY 2.0

Was ist die Singulett-Spaltung?

Trifft ein Lichtteilchen (Photon) auf ein Molekül und wird dort absorbiert, dann hebt es in diesem Molekül ein Elektron auf ein höheres Energieniveau. Dieser Zustand höherer Energie wird in der Fachsprache als "Singulett-Exziton" bezeichnet. Auf dem Weg zurück in seinen ursprünglichen, niedrigeren Energiezustand kann das Elektron über einen äußeren Stromkreis abgeführt werden – es entsteht elektrischer Strom.

In einigen wenigen Fällen ist es möglich, dass ein Molekül seine überschüssige Energie benutzt, um ein zweites Molekül in einen angeregten Zustand zu versetzen. Im Anschluss an diesen Prozess befindet sich dann je ein Elektron in den beiden Molekülen auf einem höheren Energieniveau.

Diese Zustände bezeichnet man als "Triplett-Exzitonen". Insgesamt kann ein Lichtteilchen also zwei angeregte Elektronen erzeugen, die wiederum zur Erzeugung von elektrischem Strom verwendet werden können – für die Solartechnik ist dieser Vorgang hochinteressant.

Da die Singulett-Spaltung in Femtosekunden (= eine Billiardstel Sekunde) abläuft, ist sie jedoch sehr schwer zu beobachten und zu erklären – und folglich schwer zu kontrollieren. Das internationale Forschungsteam ist letzterem nun näher gekommen, indem es herausgefunden hat, was genau bei diesem Phänomen vor sich geht:

Sie bestrahlten Pentacen-Moleküle mit ultrakurzen Femtosekunden-Laserimpulsen, um zu sehen, ob sich einzelne Photonen in zwei energetisch angeregte Elektronen umwandeln können. Das Ergebnis: Die „zwei für eins“-Umwandlung beinhaltet einen Zwischenzustand, in dem die beiden Triplett-Exzitonen ineinander verschränkt sind.

Schrödingers Katze lässt grüßen

„Das Hauptproblem bei der Echtzeit-Beobachtung der Singulett-Spaltung ist, dass die verknüpften Triplett-Exzitonen für fast alle optischen Abtastungen ‚dunkel‘ sind“, sagt Professorin Dassia Egorova von der Christian-Albrechts-Universität zu Kiel (CAU). „Das heißt, dass sie nicht direkt durch Licht erzeugt oder vernichtet werden können und somit nicht nachweisbar sind.“

Um das zu umgehen, haben die Experimentatoren aus Cambridge und Amsterdam das sogenannte zwei-dimensionale Photonen-Echo Signal in einem weltweit führenden Labor in Lund gemessen. Angeführt von Egorovas Kieler Team konnten sie anschließend ein erklärendes Modell entwickeln. Es beweist, dass wenn Pentacen-Moleküle von Laserimpulsen zur Vibration angeregt werden, sich ihre Form verändert.

Das führt dazu, dass das verschränkte Triplett-Paar kurzzeitig in der Lage ist, Licht zu absorbieren und damit nachweisbar wird. „Das Modell erklärt, dass die Moleküle durch das Vibrieren neue Quantenzustände besitzen, die gleichzeitig die Eigenschaften sowohl des lichtabsorbierenden Singulett-Exzitons, als auch die des ‚dunklen‘ Triplett-Paars haben“, sagt Egorova.

Zwei entgegengesetzte Zustände also, die in der Quantentheorie als „Superpositionen“ beschrieben werden. Bekannt sind diese seit Erwin Schrödingers Gedankenexperimenten aus den 1930er Jahren, nach denen eine Katze in einer Kiste mit den Regeln der Quantentheorie gleichzeitig lebendig und tot ist.

Die Studie aus Cambridge, Lund, Kiel und Amsterdam könnte jetzt dazu führen, die Singlett-Spaltung kontrollierbar zu machen. Neuartige, hoch-effiziente Solarzellen könnten dann doppelt so viel Strom aus einfallendem Licht erzeugen.

Originalpublikation:
Bakulin, Artem et. al.
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
Nature Chemistry (2015) | DOI: 10.1038/nchem.2371

Kontakt:
Professorin Dr. Dassia Egorova
Institut für Physikalische Chemie
Tel.: 0431/880 7741
E-Mail: egorova@phc.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Presse, Kommunikation und Marketing, Dr. Boris Pawlowski, Text: Denis Schimmelpfennig
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Jubiläum: www.uni-kiel.de/cau350 
Twitter: www.twitter.com/kieluni , Facebook: www.facebook.com/kieluni 
Link zur Pressemitteilung: http://www.uni-kiel.de/pressemeldungen/index.php?pmid=2015-391-solartechnik

Denis Schimmelpfennig | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht IT-Kühlung: So schaffen Kleinbetriebe den Sprung in die IT-Profiliga
23.09.2016 | Rittal GmbH & Co. KG

nachricht Plug & Play: Drei auf einen Streich
29.09.2016 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie