Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarforschung: Auf der Jagd nach der Superzelle

02.06.2015

Europäisches Projekt Sharc25 zielt auf 25 Prozent Wirkungsgrad bei Dünnschichtsolarzellen

Eine extrem effiziente Dünnschichtsolarzelle für die nächste Generation kostengünstiger Solarmodule ist das Ziel eines neuen europäischen Forschungsprojekts mit dem Namen „Sharc25“. Angepeilt werden Wirkungsgrade bis 25 Prozent für im Koverdampfungsverfahren hergestellte Dünnschichtsolarzellen aus Kupfer-Indium-Gallium-Diselenid (CIGS) – das sind gut 3 Prozentpunkte mehr als bisher.


Forschung an CIGS-Dünnschichtsolarzellen.

Foto: ZSW


Die Ziele des europäischen Forschungsvorhabens Sharc25.

Foto: Sharc25

Das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) koordiniert das Vorhaben. Insgesamt elf Forschungspartner aus acht Ländern sind mit an Bord. Das Projekt ist im Mai gestartet, dauert 3,5 Jahre und wird durch das EU-Forschungsrahmenprogramm „Horizon 2020“ mit insgesamt rund 4,6 Millionen Euro gefördert. Weitere 1,6 Millionen Euro kommen von der Schweizer Regierung. Die Ergebnisse könnten der europäischen Solarindustrie einen Schub verleihen.

Zu den Partnern gehören neben dem ZSW (D) die Eidgenössische Materialprüfungs- und Forschungsanstalt Empa (CH), die Universitäten Luxemburg (LU), Rouen (F), Parma (I), Aalto (FIN), die Interuniversitair Micro-Elektronica Centrum VZW imec (B), das Helmholtz-Zentrum Berlin für Materialien und Energie HZB (D), das International Iberian Nanotechnology Laboratory INL (P), die Flisom AG (CH) und die Manz CIGS Technology GmbH (D). In dem EU-Vorhaben soll das fachübergreifende Know-how der elf Partner gebündelt und für die Entwicklung besserer Zellen fruchtbar gemacht werden.

Neue Chance für europäische Zellhersteller

Der Wirkungsgrad von Dünnschichtsolarzellen auf der Basis von Chalkopyriten hat sich in den letzten Jahren stark verbessert. CIGS-Solarzellen auf Folie liegen mit 20,4 Prozent beinahe gleichauf mit multikristallinen Solarzellen. CIGS auf Glas erreichte 2013 erstmals einen Vorsprung, den es 2014 um 1,3 Prozentpunkte auf 21,7 Prozent ausbaute. Die beiden Weltrekordwerte wurden von zwei Sharc25-Projektpartnern erreicht: Die Empa hält den Bestwert auf dem Trägermaterial Folie, das ZSW den auf Glas.

Jetzt soll die Effizienz mit dem Projekt Sharc25, abgekürzt für „Super high efficiency Cu(In, Ga)Se2 thin-film solar cells approaching 25%“, weiter steigen. Um diesem Ziel näher zu kommen, verfolgen die fünf Forschungsinstitute, vier Universitäten und zwei Unternehmen drei Strategien:

Ein verbessertes Absorbermaterial, die Nutzbarmachung von neuen Konzepten für effizientere Ober- und Grenzflächen sowie ein optimiertes Lichtmanagement sollen die Wirkungsgradgrenze weiter nach oben schieben. So soll der Wirkungsgrad um rund drei Prozentpunkte in Richtung 25 Prozent hochschnellen.

Eine solche Verbesserung würde die Konkurrenzfähigkeit gegenüber den auf dem Markt dominanten multikristallinen Solarzellen aus Asien weiter erhöhen und könnte der europäischen Dünnschicht-PV-Industrie entscheidende Impulse verleihen. Vorschläge für die industrielle Umsetzung der erzielten Forschungsergebnisse soll es ebenfalls in dem Projekt geben.

Ein Transfer der Forschungsergebnisse in die Solarwirtschaft könnte auch in Europa die Kosten der industriellen Solarmodulproduktion auf unter 35 Eurocent pro Watt peak und die der installierten PV-Systeme auf unter 60 Eurocent pro Watt peak senken. Reduzierte Investitionskosten von weniger als 75 Eurocent pro Watt peak für Solarfabriken über 100 Megawatt Produktionskapazität mit weiteren Kostensenkungspotenzialen durch die Massenproduktion wären in der Folge möglich.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641004.

Das Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) gehört zu den führenden Instituten für angewandte Forschung auf den Gebieten Photovoltaik, regenerative Kraftstoffe, Batterietechnik und Brennstoffzellen sowie Energiesystemanalyse. An den drei ZSW-Standorten Stuttgart, Ulm und Widderstall sind derzeit rund 230 Wissenschaftler, Ingenieure und Techniker beschäftigt. Hinzu kommen 70 wissenschaftliche und studentische Hilfskräfte.

Ansprechpartner Pressearbeit
Claudia Brusdeylins, Zentrum für Sonnenenergie- und
Wasserstoff-Forschung Baden-Württemberg (ZSW), Industriestr. 6,
70565 Stuttgart, Tel. +49 (0)711 7870-278, Fax +49 (0)711 7870-230,
claudia.brusdeylins@zsw-bw.de, www.zsw-bw.de

Axel Vartmann, PR-Agentur Solar Consulting GmbH,
Emmy-Noether-Str. 2, 79110 Freiburg,
Tel.: +49 (0)761 380968-23, Fax: +49 (0)761 380968-11,
vartmann@solar-consulting.de, www.solar-consulting.de

Claudia Brusdeylins | Solar Consulting GmbH

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften