Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarenergie effizienter nutzen

14.04.2011
Die Erschließung und Nutzung neuer Energiequellen zählt zu den größten Herausforderungen unserer Zeit. Solarenergie spielt dabei eine zentrale Rolle.

Eine interessante Variante ist die direkte Umwandlung von Sonnenenergie in chemische Energie, beispielsweise die Erzeugung von Wasserstoff durch Spaltung von Wasser. Der momentan effizienteste, aber noch wenig verstandene Prozess ist die Titanoxid-basierte Photo-katalyse. Wissenschaftler des KIT-Instituts für Funktionelle Grenzflächen (IFG) haben in Zusammenarbeit mit Kollegen aus dem In- und Ausland die fundamentalen Mechanismen der Photochemie an Titanoxid untersucht und liefern neue detaillierte Erkenntnisse.

Obwohl die Wasserstoffgewinnung aus Wasser und Sonnenlicht mittels Oxidpulvern schon seit mehreren Jahrzehnten intensiv untersucht wird, gibt es noch immer keine befriedigende Beschreibung der zugrunde liegenden physikalischen und chemischen Mechanismen. Unter der Leitung von Professor Christof Wöll ist es Wissenschaftlern des KIT-Instituts für Funktionelle Grenzflächen (IFG) nun in Zusammenarbeit mit Kollegen der Universitäten St. Andrews (Schottland) und Bochum sowie des Helmholtz-Forschungs-zentrums Berlin gelungen, neue Erkenntnisse zu fundamentalen Mechanismen der Photochemie an Titandioxid (TiO2) zu gewinnen.

Titandioxid ist ein photoaktives Material und kommt in der Natur in den zwei Modifikationen Rutil und Anatase vor, wobei die Anatase-Form eine zehnfach höhere photochemische Aktivität besitzt. Fällt Licht auf dieses weiße Pulver, das auch als Pigment in der Malerei und als Sonnenschutzmittel eingesetzt wird, werden Elektronen in angeregte Zustände versetzt und können dann beispielsweise Wasser in seine Bestandteile Sauerstoff und Wasserstoff spalten. Der auf diese Weise gewonnene Wasserstoff ist ein „sauberer“ Energieträger, da bei seiner Verbrennung kein klimaschädliches Treibhausgas, sondern lediglich Wasser entsteht. Titandioxid wird auch zur Herstellung selbstreinigender Oberflächen verwendet. Dabei entfernt einfallendes Sonnenlicht durch photochemische Prozesse unerwünschte Beläge. In Krankenhäusern wird dieser Effekt zur Sterilisierung speziell beschichteter Instrumente durch Bestrahlen mit UV-Licht genutzt.

Die physikalischen Mechanismen dieser photochemischen Reaktionen an Titandioxidoberflächen und insbesondere der Grund für die viel höhere Aktivität von Anatase konnten bislang noch nicht aufgeklärt werden, da die dafür verwendeten Pulverpartikel mit nur wenigen Nanometern winzig klein sind. Solch kleine Partikel sind für die Untersuchung mit leistungsstarken Methoden der Oberflächen-analytik nicht geeignet. Daher haben die Forscher für ihre Messungen Millimeter-große Einkristalle verwendet. An derartigen Substraten konnten dann mit Hilfe eines neuartigen Infrarot-Spektrometers erstmals präzise Messungen zur Photochemie an der Oberfläche von Titandioxid durchgeführt werden.

Außerdem haben die Wissenschaftler mittels einer laser-basierten Technik die Lebensdauer von lichterzeugten elektronischen Anregungen im Inneren von TiO2-Kristallen bestimmt. Genaue Informationen über diese Prozesse sind von großer Bedeutung, wie Christof Wöll, Leiter des IFG, erklärt: „Eine kurze Lebensdauer bedeutet, dass die angeregten Elektronen sofort wieder in ihren Ausgangszustand zurück fallen. Es entsteht eine Art interner Kurzschluss. Bei einer großen Lebensdauer bleiben die Elektronen lange genug im angeregten Zustand, um die Oberfläche des Kristalls zu erreichen, wo sie dann chemische Prozesse in Gang setzen.“ Anatase ist hierfür besonders gut geeignet, weil die elektronische Struktur dieses Materials eine Besonderheit aufweist, die diesen „internen Kurzschluss“ verhindert. Die Kenntnis dieser Ursache wird es den Forschern nun erlauben, Form, Größe und Dotierung der in den Photoreaktoren eingesetzten Anatase-Partikel weiter zu optimieren. Ziel ist es, photoaktive Materialien mit höheren Wirkungsgraden und längeren Lebensdauern zu entwickeln. "Für die Erzeugung elektrischer und chemischer Energie aus Sonnenlicht haben die Ergebnisse von Wöll und Mitarbeitern eine große Bedeutung, insbesondere im Hinblick auf die Optimierung von Photoreaktoren,“ sagt Professor Olaf Deutschmann, Sprecher des Helmholtz-Graduiertenkollegs "Energy-related Catalysis“.

Ihre Ergebnisse haben die Forscher in der Fachzeitschrift Physical Review Letters publiziert. Die Online-Version des Artikels ist abrufbar unter: http://prl.aps.org/abstract/PRL/v106/i13/e138302

Mingchun Xu, Youkun Gao, Elias Martinez Moreno, Marinus Kunst, Martin Muhler, Yuemin Wang, Hicham Idriss, Christof Wöll, Phys. Rev. Lett. 106, 138302 (2011)

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Inge Arnold
Presse, Kommunikation und
Marketing
Tel.: +49 721 608-22861
Fax: +49 721 608-25080
E-Mail: inge.arnold@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften
29.03.2017 | Technische Universität Dresden

nachricht Elektromobilität: Forschungen des Fraunhofer LBF ebnen den Weg in die Alltagstauglichkeit
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten