Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarenergie effizienter nutzen

14.04.2011
Die Erschließung und Nutzung neuer Energiequellen zählt zu den größten Herausforderungen unserer Zeit. Solarenergie spielt dabei eine zentrale Rolle.

Eine interessante Variante ist die direkte Umwandlung von Sonnenenergie in chemische Energie, beispielsweise die Erzeugung von Wasserstoff durch Spaltung von Wasser. Der momentan effizienteste, aber noch wenig verstandene Prozess ist die Titanoxid-basierte Photo-katalyse. Wissenschaftler des KIT-Instituts für Funktionelle Grenzflächen (IFG) haben in Zusammenarbeit mit Kollegen aus dem In- und Ausland die fundamentalen Mechanismen der Photochemie an Titanoxid untersucht und liefern neue detaillierte Erkenntnisse.

Obwohl die Wasserstoffgewinnung aus Wasser und Sonnenlicht mittels Oxidpulvern schon seit mehreren Jahrzehnten intensiv untersucht wird, gibt es noch immer keine befriedigende Beschreibung der zugrunde liegenden physikalischen und chemischen Mechanismen. Unter der Leitung von Professor Christof Wöll ist es Wissenschaftlern des KIT-Instituts für Funktionelle Grenzflächen (IFG) nun in Zusammenarbeit mit Kollegen der Universitäten St. Andrews (Schottland) und Bochum sowie des Helmholtz-Forschungs-zentrums Berlin gelungen, neue Erkenntnisse zu fundamentalen Mechanismen der Photochemie an Titandioxid (TiO2) zu gewinnen.

Titandioxid ist ein photoaktives Material und kommt in der Natur in den zwei Modifikationen Rutil und Anatase vor, wobei die Anatase-Form eine zehnfach höhere photochemische Aktivität besitzt. Fällt Licht auf dieses weiße Pulver, das auch als Pigment in der Malerei und als Sonnenschutzmittel eingesetzt wird, werden Elektronen in angeregte Zustände versetzt und können dann beispielsweise Wasser in seine Bestandteile Sauerstoff und Wasserstoff spalten. Der auf diese Weise gewonnene Wasserstoff ist ein „sauberer“ Energieträger, da bei seiner Verbrennung kein klimaschädliches Treibhausgas, sondern lediglich Wasser entsteht. Titandioxid wird auch zur Herstellung selbstreinigender Oberflächen verwendet. Dabei entfernt einfallendes Sonnenlicht durch photochemische Prozesse unerwünschte Beläge. In Krankenhäusern wird dieser Effekt zur Sterilisierung speziell beschichteter Instrumente durch Bestrahlen mit UV-Licht genutzt.

Die physikalischen Mechanismen dieser photochemischen Reaktionen an Titandioxidoberflächen und insbesondere der Grund für die viel höhere Aktivität von Anatase konnten bislang noch nicht aufgeklärt werden, da die dafür verwendeten Pulverpartikel mit nur wenigen Nanometern winzig klein sind. Solch kleine Partikel sind für die Untersuchung mit leistungsstarken Methoden der Oberflächen-analytik nicht geeignet. Daher haben die Forscher für ihre Messungen Millimeter-große Einkristalle verwendet. An derartigen Substraten konnten dann mit Hilfe eines neuartigen Infrarot-Spektrometers erstmals präzise Messungen zur Photochemie an der Oberfläche von Titandioxid durchgeführt werden.

Außerdem haben die Wissenschaftler mittels einer laser-basierten Technik die Lebensdauer von lichterzeugten elektronischen Anregungen im Inneren von TiO2-Kristallen bestimmt. Genaue Informationen über diese Prozesse sind von großer Bedeutung, wie Christof Wöll, Leiter des IFG, erklärt: „Eine kurze Lebensdauer bedeutet, dass die angeregten Elektronen sofort wieder in ihren Ausgangszustand zurück fallen. Es entsteht eine Art interner Kurzschluss. Bei einer großen Lebensdauer bleiben die Elektronen lange genug im angeregten Zustand, um die Oberfläche des Kristalls zu erreichen, wo sie dann chemische Prozesse in Gang setzen.“ Anatase ist hierfür besonders gut geeignet, weil die elektronische Struktur dieses Materials eine Besonderheit aufweist, die diesen „internen Kurzschluss“ verhindert. Die Kenntnis dieser Ursache wird es den Forschern nun erlauben, Form, Größe und Dotierung der in den Photoreaktoren eingesetzten Anatase-Partikel weiter zu optimieren. Ziel ist es, photoaktive Materialien mit höheren Wirkungsgraden und längeren Lebensdauern zu entwickeln. "Für die Erzeugung elektrischer und chemischer Energie aus Sonnenlicht haben die Ergebnisse von Wöll und Mitarbeitern eine große Bedeutung, insbesondere im Hinblick auf die Optimierung von Photoreaktoren,“ sagt Professor Olaf Deutschmann, Sprecher des Helmholtz-Graduiertenkollegs "Energy-related Catalysis“.

Ihre Ergebnisse haben die Forscher in der Fachzeitschrift Physical Review Letters publiziert. Die Online-Version des Artikels ist abrufbar unter: http://prl.aps.org/abstract/PRL/v106/i13/e138302

Mingchun Xu, Youkun Gao, Elias Martinez Moreno, Marinus Kunst, Martin Muhler, Yuemin Wang, Hicham Idriss, Christof Wöll, Phys. Rev. Lett. 106, 138302 (2011)

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:

Inge Arnold
Presse, Kommunikation und
Marketing
Tel.: +49 721 608-22861
Fax: +49 721 608-25080
E-Mail: inge.arnold@kit.edu

Monika Landgraf | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Linearpotentiometer LRW2/3 - Höchste Präzision bei vielen Messpunkten
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht Neues 100 kW-Wechselrichtermodul für B6-Standard halbiert Gewicht und Volumen
17.05.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie