Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht

07.12.2017

Ein Forschungsteam am HZB hat die verschiedenen Defekt-Typen in Kesterit-Halbleitern erstmals genau charakterisiert. Dies gelang ihnen mit Hilfe von Neutronenstreuung am BER II und am Oak Ridge National Laboratory, USA. Die Ergebnisse zeigen Möglichkeiten zur gezielten Optimierung von Kesterit-Solarzellen auf.

Kesterite sind preisgünstige und umweltfreundliche Materialien, die halbleitend sind und Licht in Strom umwandeln können. Vom strukturellen Aufbau her ähneln Kesterite den Chalkopyrit-Halbleitern mit der Summenformel Cu(In,Ga)Se2. In Kesteriten (z. B. Cu2ZnSnSe4 abgekürzt CZTSe) werden die seltenen Elemente Indium und Gallium jedoch durch Zink und Zinn ersetzt, die viel häufiger in der Erdkruste vorkommen und weitaus billiger sind.


Das Bild (backscattered electron micrograph) zeigt CZTSe-Kristalle (grau) in einer Epoxid-Matrix (schwarz).

HZB


Ausmaß der Cu/Zn Unordnung in der Kesterit-Phase in Abhängigkeit von den Verhältnissen (Cu/(Zn+Sn) und Zn/Sn.

HZB

Aktuell erreichen die besten Kesterit-basierten Dünnschicht-Solarzellen Wirkungsgrade bis zu 12,6 Prozent, und dies mit Kesterit-Schichten von nur einem Mikrometer Dicke. Dies macht sie zu interessanten Kandidaten für sehr preiswerte und sogar biegsame Solarmodule, die ungiftig und robust sind. Einkristalline Silizium-Solarzellen oder Chalkopyrit-Dünnschichten schaffen zwar Wirkungsgrade weit über 20 Prozent, sind allerdings deutlich teurer.

Bestimmte Defekte steigern die Effizienz

Bei den Kesterit-Dünnschicht-Solarzellen werden die höchsten Wirkungsgrade mit Hilfe von CZTSe-Absorberschichten erreicht, die im Vergleich zur Summenformel etwas weniger Kupfer und etwas mehr Zink enthalten, also eine kupferarme und zinkreiche Zusammensetzung aufweisen. Eine solche Stöchiometrieabweichung führt zwangsläufig zu Fehlstellen in der Kristallstruktur, die aber offenbar den Wirkungsgrad erhöhen.

„Wir haben nun mit Hilfe von Neutronenbeugungsexperimenten diese Fehlstellen genau charakterisiert und ihre lokalen Konzentrationen ermittelt“, erklärt Dr. Galina Gurieva aus der HZB-Abteilung Struktur und Dynamik von Energiematerialien.

Mit Neutronen Defekte katalogisiert

Dafür ist die Methode der Neutronenbeugung ideal geeignet: Die beiden Elemente (Cu+ und Zn2+) lassen sich mit Neutronen sehr gut voneinander unterscheiden, was mittels konventioneller Röntgendiffraktometrie nicht der Fall ist. Das Team hat 29 CZTSe-Pulverproben untersucht und an den Neutronenquellen SNS am Oak Ridge National Laboratory, USA, und am BER II des HZB Experimente durchgeführt.

Dabei gelang es ihnen, verschiedene Defekt-Typen genau zu katalogisieren. So konnten sie Plätze in der Kristallstruktur identifizieren, auf denen ein Kupferatom fehlte (Kupfer-Leerstellen, VCu), aber auch Plätze, die statt mit dem vorgesehenen Element mit einem anderen besetzt waren, zum Beispiel einem Zink-Atom anstelle eines Zinn-Atoms ("ZnSn anti site").

Unordnung "ausheizen"

Neben den Punktdefekten, deren Auftreten durch Stöchiometrieabweichungen erklärt werden kann, spielt auch die sogenannte Cu/Zn Unordnung (hier besetzten ein Teil der Kupferatome Zinkplätze in der Kristallstruktur und umgekehrt) eine wichtige Rolle. Diese Unordnung kann durch eine Temperaturbehandlung (Annealing) reduziert werden, was sich wiederum positiv auf die Effizienz einer CZTSe-basierten Solarzelle auswirken kann.

Hinweise für weitere Optimierung

„Tatsächlich stimmen die experimentell ermittelten Punktdefekte recht gut mit dem theoretischen Modell zu möglichen Defekten überein“, erklärt Gurieva. „Wir können aus dieser Studie konkrete Hinweise ableiten, welche Art und Konzentration von Punktdefekten in einer gegebenen Zusammensetzung der Kesterit-Dünnschichten erwartet werden können. Dies hilft dabei, Kesterit-basierte Solarzellen gezielt zu optimieren“, sagt Gurieva.


Zur Publikation im Journal of Applied Physics (2018): Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4; Galina Gurieva, Laura Elisa Valle Rios, Alexandra Franz, Pamela Whitfield, Susan Schorr.

DOI:10.1063/1.4997402

Dr. Antonia Rötger | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Weitere Informationen:
http://www.helmholtz-berlin.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen
12.12.2017 | Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES

nachricht Meilenstein in der Kreissägetechnologie
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit