Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So passt mehr Strom in den Elektro-Tank

27.06.2013
Chemiker der TU Chemnitz stellen leistungsfähige Energiespeicher für Elektroautos vor: Lithium-Schwefel-Batterien werden dank maßgeschneiderter Kohlenstoffmaterialien haltbarer

Um mit einem Elektroauto die gleiche Reichweite zu erzielen, wie mit einem durchschnittlichen Diesel-Fahrzeug, bräuchte es nach aktuellem Stand der Technik eine mehr als 500 Kilogramm schwere Batterie.

"Elektroautos lassen sich mit den gegenwärtigen Batterien aufgrund deren geringen Energiedichte nicht wirtschaftlich betreiben. Die Batterien liefern, bezogen auf ihr Gewicht, zu wenig Energie", fasst Prof. Dr. Stefan Spange zusammen. Der Inhaber der Professur Polymerchemie an der Technischen Universität Chemnitz stellt mit seinem Team eine Weiterentwicklung von Lithium-Schwefel-Batterien vor, die genau diesen Mangel beheben sollen.

Derzeitiger Stand der Technik in Elektroautos sind Lithium-Ionen-Akkus. Diese kommen auch in Mobiltelefonen, Notebooks und anderen mobilen Elektrogeräten zum Einsatz. "Die Leistung von Lithium-Ionen-Akkus lässt sich prinzipiell mit neuen Materialien für die Elektroden um ein Vielfaches steigern. Dabei gilt die Lithium-Schwefel-Batterie als sehr populärer und vielversprechender Ansatz in der Wissenschaftsszene", so Spange.
Diese Batterieart besteht aus einer Schwefel-Elektrode und einer Elektrode aus metallischem Lithium. Die Lithium-Schwefel-Batterie hat eine theoretische Kapazität von 1.672 Milli-Ampere-Stunden pro Gramm. Zum Vergleich: Lithium-Ionen-Akkus erreichen eine theoretische Kapazität von 275 Milli-Ampere-Stunden pro Gramm, also nur rund ein Sechstel. Vorteile einer Lithium-Schwefel-Batterie sind neben dieser hohen Energiedichte der geringe Preis von elementarem Schwefel und dessen Verfügbarkeit in großen Mengen. Der Nachteil der Lithium-Schwefel-Module: Sie sind nur sehr begrenzt haltbar.

Elementarer Schwefel - also die Form, in der Schwefel in der Natur vorkommt - leitet keinen elektrischen Strom. Deshalb kann er nicht direkt als Elektrodenmaterial verwendet werden und wird vorwiegend in Kombination mit Kohlenstoff eingesetzt. Als weiteres Problem gelten Reaktionsprodukte des Schwefels, sogenannte Polysulfide, die im Elektrolyten - der Batterieflüssigkeit – löslich sind. Beim Laden und Entladen löst sich deshalb ständig Material aus der Schwefel-Elektrode heraus. Das führt zu einer schnellen Zerstörung der Batterie, wodurch die erste Generation der Lithium-Schwefel-Zellen eine sehr geringe Lebensdauer aufweist. Zudem ändert sich beim Laden und Entladen das Volumen des Schwefel-Materials, was dieses zusätzlich belastet. Durch das Verschmelzen von Schwefel mit hohlem Kohlenstoffmaterial konnten kanadische Forscher die Lebensdauer im Jahr 2009 erstmals auf 50 Lade-Entlade-Zyklen steigern. "Das ist immer noch höchst unbefriedigend. Es ist unvorstellbar dem Halter eines Elektrofahrzeuges klarzumachen, dass der Wagen nach 50 `Tankfüllungen´ nicht mehr funktioniert", so Spange.

Genau an dieser Stelle setzen die Arbeiten der Professur Polymerchemie an: Die Wissenschaftler haben Kohlenstoffmaterialien für die Anwendung in Lithium-Schwefel-Batterien maßgeschneidert. Dr. Falko Böttger-Hiller hat in seiner Doktorarbeit winzig kleine Kohlenstoffhohlkugeln mit Schwefel verschmolzen. "Diese Kohlenstoffhohlkugeln sind miteinander zu einer Art Kohlenstoffschaum verwachsen und verfügen über Hohlräume mit einem Innendurchmesser von sieben Nanometern. Sie sind also etwa so groß wie ein Zehntausendstel Haardurchmesser. Des Weiteren haben diese Kugeln winzige Löcher in ihrer Hülle, die den Schwefel förmlich aufsaugen", beschreibt Böttger-Hiller. Die Chemnitzer Chemiker analysierten das Verhalten der verwendeten Materialien abhängig vom Anteil des Kohlenstoffs, von der Kugelgröße, der Dicke der Schalen und der Größe der Poren in der Schale. "Mit unserem Verfahren können wir erstmals systematisch die Auswirkungen der Kugeleigenschaften auf die Batterieperformance untersuchen", beschreibt Böttger-Hiller. Ein hoher Anteil Kohlenstoff führe zu einer guten Leitfähigkeit des Materials und somit zu einer hohen Kapazität der Batterie. Die Kugelgröße von sieben Nanometern erwies sich als optimal. Denn so sind die Kugeln einerseits groß genug, um den Schwefel gut aufzusaugen und somit seine Auflösung im Elektrolyten zu verhindern. Andererseits sind sie klein genug, um durch ihre Hohlräume die Volumenänderung der Elektrode beim Laden und Entladen zu minimieren.

"Diese beiden Aspekte verbessern die Lebensdauer der Batterien immens. Nach einem im positiven Sinne aufgeregten Anruf des Industriepartners, der die Batterietests durchgeführt hat, wurde uns bewusst, dass wir es geschafft haben", erzählt Böttger-Hiller. Die TU-Wissenschaftler haben die Materialien hergestellt und ihre Eigenschaften analysiert. Die Batterietests erfolgten durch die BASF SE. Die maßgeschneiderten Kohlenstoffmaterialien führen demnach zu leistungsfähigen Batterien mit einer Kapazität von rund 900 Milli-Ampere-Stunden pro Gramm - das ist mehr als das Dreifache der Kapazität der heute üblichen Lithium-Ionen-Akkus. Sie laufen stabil für mehr als 500 Lade- und Entlade-Zyklen und weisen auch dann noch ca. 70 Prozent ihrer Ausgangsleistung auf.

"Diese Arbeit wird nicht nur den Weg hin zu Batterien mit hohen spezifischen Energien für tragbare Elektronik und Elektroautos ebnen, sondern auch bei der Entwicklung neuer Superkondensatoren und Katalysatorträger eine große Rolle spielen", schätzt Prof. Spange ein und ergänzt: "Eine Besonderheit des in Chemnitz entwickelten Prozesses ist die Möglichkeit, nanostrukturierte Kohlenstoffmaterialien nach einem einfachen, modularen Prinzip gezielt aufzubauen. So ist, im Gegensatz zu anderen Arbeiten, die gezielte Herstellung speziell für eine Anwendung angepasster Kohlenstoffe möglich."

Die Forschungsergebnisse wurden in der Zeitschrift "Angewandte Chemie" veröffentlicht:
Böttger-Hiller, F., Kempe, P., Cox, G., Panchenko, A., Janssen, N., Petzold, A., Thurn-Albrecht, T., Borchardt, L., Rose, M., Kaskel, S., Georgi, C., Lang, H., Spange, S. (2013), Zwillingspolymerisation an sphärischen Hart-Templaten – ein Weg zu Kohlenstoffhohlkugeln mit einstellbarer Größe und mikro- oder mesoporöser Schale. Angew. Chem., doi: 10.1002/ange.201209849

Weitere Informationen erteilt Prof. Dr. Stefan Spange,
Telefon 0371 531-21230, E-Mail stefan.spange@chemie.tu-chemnitz.de

Katharina Thehos | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de/chemie/polymer

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Graduiertenschule HyPerCells entwickelt hocheffiziente Perowskit- Dünnschichtsolarzelle
17.08.2017 | Universität Potsdam

nachricht Lasersensoren LAH-G1 – Optische Abstandssensoren mit Messwertanzeige
15.08.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie