Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

So passt mehr Strom in den Elektro-Tank

27.06.2013
Chemiker der TU Chemnitz stellen leistungsfähige Energiespeicher für Elektroautos vor: Lithium-Schwefel-Batterien werden dank maßgeschneiderter Kohlenstoffmaterialien haltbarer

Um mit einem Elektroauto die gleiche Reichweite zu erzielen, wie mit einem durchschnittlichen Diesel-Fahrzeug, bräuchte es nach aktuellem Stand der Technik eine mehr als 500 Kilogramm schwere Batterie.

"Elektroautos lassen sich mit den gegenwärtigen Batterien aufgrund deren geringen Energiedichte nicht wirtschaftlich betreiben. Die Batterien liefern, bezogen auf ihr Gewicht, zu wenig Energie", fasst Prof. Dr. Stefan Spange zusammen. Der Inhaber der Professur Polymerchemie an der Technischen Universität Chemnitz stellt mit seinem Team eine Weiterentwicklung von Lithium-Schwefel-Batterien vor, die genau diesen Mangel beheben sollen.

Derzeitiger Stand der Technik in Elektroautos sind Lithium-Ionen-Akkus. Diese kommen auch in Mobiltelefonen, Notebooks und anderen mobilen Elektrogeräten zum Einsatz. "Die Leistung von Lithium-Ionen-Akkus lässt sich prinzipiell mit neuen Materialien für die Elektroden um ein Vielfaches steigern. Dabei gilt die Lithium-Schwefel-Batterie als sehr populärer und vielversprechender Ansatz in der Wissenschaftsszene", so Spange.
Diese Batterieart besteht aus einer Schwefel-Elektrode und einer Elektrode aus metallischem Lithium. Die Lithium-Schwefel-Batterie hat eine theoretische Kapazität von 1.672 Milli-Ampere-Stunden pro Gramm. Zum Vergleich: Lithium-Ionen-Akkus erreichen eine theoretische Kapazität von 275 Milli-Ampere-Stunden pro Gramm, also nur rund ein Sechstel. Vorteile einer Lithium-Schwefel-Batterie sind neben dieser hohen Energiedichte der geringe Preis von elementarem Schwefel und dessen Verfügbarkeit in großen Mengen. Der Nachteil der Lithium-Schwefel-Module: Sie sind nur sehr begrenzt haltbar.

Elementarer Schwefel - also die Form, in der Schwefel in der Natur vorkommt - leitet keinen elektrischen Strom. Deshalb kann er nicht direkt als Elektrodenmaterial verwendet werden und wird vorwiegend in Kombination mit Kohlenstoff eingesetzt. Als weiteres Problem gelten Reaktionsprodukte des Schwefels, sogenannte Polysulfide, die im Elektrolyten - der Batterieflüssigkeit – löslich sind. Beim Laden und Entladen löst sich deshalb ständig Material aus der Schwefel-Elektrode heraus. Das führt zu einer schnellen Zerstörung der Batterie, wodurch die erste Generation der Lithium-Schwefel-Zellen eine sehr geringe Lebensdauer aufweist. Zudem ändert sich beim Laden und Entladen das Volumen des Schwefel-Materials, was dieses zusätzlich belastet. Durch das Verschmelzen von Schwefel mit hohlem Kohlenstoffmaterial konnten kanadische Forscher die Lebensdauer im Jahr 2009 erstmals auf 50 Lade-Entlade-Zyklen steigern. "Das ist immer noch höchst unbefriedigend. Es ist unvorstellbar dem Halter eines Elektrofahrzeuges klarzumachen, dass der Wagen nach 50 `Tankfüllungen´ nicht mehr funktioniert", so Spange.

Genau an dieser Stelle setzen die Arbeiten der Professur Polymerchemie an: Die Wissenschaftler haben Kohlenstoffmaterialien für die Anwendung in Lithium-Schwefel-Batterien maßgeschneidert. Dr. Falko Böttger-Hiller hat in seiner Doktorarbeit winzig kleine Kohlenstoffhohlkugeln mit Schwefel verschmolzen. "Diese Kohlenstoffhohlkugeln sind miteinander zu einer Art Kohlenstoffschaum verwachsen und verfügen über Hohlräume mit einem Innendurchmesser von sieben Nanometern. Sie sind also etwa so groß wie ein Zehntausendstel Haardurchmesser. Des Weiteren haben diese Kugeln winzige Löcher in ihrer Hülle, die den Schwefel förmlich aufsaugen", beschreibt Böttger-Hiller. Die Chemnitzer Chemiker analysierten das Verhalten der verwendeten Materialien abhängig vom Anteil des Kohlenstoffs, von der Kugelgröße, der Dicke der Schalen und der Größe der Poren in der Schale. "Mit unserem Verfahren können wir erstmals systematisch die Auswirkungen der Kugeleigenschaften auf die Batterieperformance untersuchen", beschreibt Böttger-Hiller. Ein hoher Anteil Kohlenstoff führe zu einer guten Leitfähigkeit des Materials und somit zu einer hohen Kapazität der Batterie. Die Kugelgröße von sieben Nanometern erwies sich als optimal. Denn so sind die Kugeln einerseits groß genug, um den Schwefel gut aufzusaugen und somit seine Auflösung im Elektrolyten zu verhindern. Andererseits sind sie klein genug, um durch ihre Hohlräume die Volumenänderung der Elektrode beim Laden und Entladen zu minimieren.

"Diese beiden Aspekte verbessern die Lebensdauer der Batterien immens. Nach einem im positiven Sinne aufgeregten Anruf des Industriepartners, der die Batterietests durchgeführt hat, wurde uns bewusst, dass wir es geschafft haben", erzählt Böttger-Hiller. Die TU-Wissenschaftler haben die Materialien hergestellt und ihre Eigenschaften analysiert. Die Batterietests erfolgten durch die BASF SE. Die maßgeschneiderten Kohlenstoffmaterialien führen demnach zu leistungsfähigen Batterien mit einer Kapazität von rund 900 Milli-Ampere-Stunden pro Gramm - das ist mehr als das Dreifache der Kapazität der heute üblichen Lithium-Ionen-Akkus. Sie laufen stabil für mehr als 500 Lade- und Entlade-Zyklen und weisen auch dann noch ca. 70 Prozent ihrer Ausgangsleistung auf.

"Diese Arbeit wird nicht nur den Weg hin zu Batterien mit hohen spezifischen Energien für tragbare Elektronik und Elektroautos ebnen, sondern auch bei der Entwicklung neuer Superkondensatoren und Katalysatorträger eine große Rolle spielen", schätzt Prof. Spange ein und ergänzt: "Eine Besonderheit des in Chemnitz entwickelten Prozesses ist die Möglichkeit, nanostrukturierte Kohlenstoffmaterialien nach einem einfachen, modularen Prinzip gezielt aufzubauen. So ist, im Gegensatz zu anderen Arbeiten, die gezielte Herstellung speziell für eine Anwendung angepasster Kohlenstoffe möglich."

Die Forschungsergebnisse wurden in der Zeitschrift "Angewandte Chemie" veröffentlicht:
Böttger-Hiller, F., Kempe, P., Cox, G., Panchenko, A., Janssen, N., Petzold, A., Thurn-Albrecht, T., Borchardt, L., Rose, M., Kaskel, S., Georgi, C., Lang, H., Spange, S. (2013), Zwillingspolymerisation an sphärischen Hart-Templaten – ein Weg zu Kohlenstoffhohlkugeln mit einstellbarer Größe und mikro- oder mesoporöser Schale. Angew. Chem., doi: 10.1002/ange.201209849

Weitere Informationen erteilt Prof. Dr. Stefan Spange,
Telefon 0371 531-21230, E-Mail stefan.spange@chemie.tu-chemnitz.de

Katharina Thehos | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de/chemie/polymer

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Hochpolige Push-in-Kontakteinsätze für schwere Steckverbinder
22.05.2018 | PHOENIX CONTACT GmbH & Co.KG

nachricht Crimpzange mit drehbarem Gesenk
18.05.2018 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics