Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Simulation von Lithium-Ionen-Batterien

17.11.2016

Die Deutsche Forschungsgemeinschaft (DFG) richtet am Karlsruher Institut für Technologie (KIT) ein neues Graduiertenkolleg ein: „SiMET – Simulation mechanisch-elektrisch-thermischer Vorgänge in Lithium-Ionen-Batterien“ startet 2017 und wird für zunächst viereinhalb Jahre gefördert. In dem Graduiertenkolleg arbeiten Doktorandinnen und Doktoranden verschiedener wissenschaftlicher Disziplinen an Modellen, mit denen sich unter anderem simulieren lässt, wie sich Unterschiede im inneren Aufbau auf das Verhalten der Batterien im Betrieb auswirken.

Batterien gelten als Schlüsselkomponenten für viele Zukunftstechnologien, besonders die Elektromobilität oder die Stromversorgung aus fluktuierenden erneuerbaren Quellen. In vielen mobilen und stationären Anwendungen von Smartphones über Elektroautos bis hin zu Batteriespeichern im Stromnetz sind inzwischen Lithium-Ionen-Batterien anzutreffen.


Die miteinander verbundenen mechanisch-elektrisch-thermischen Vorgänge in Lithium-Ionen-Batterien sind Gegenstand der Arbeiten im Graduiertenkolleg SiMET.

Im Rahmen des neuen Graduiertenkollegs SiMET am KIT arbeiten Nachwuchsforscherinnen und -forscher im Rahmen interdisziplinärer Doktorarbeiten an der Modellbildung und der Entwicklung numerischer Simulationsmethoden für die in Lithium-Ionen-Batterien ablaufenden, eng miteinander verknüpften mechanisch-elektrisch-thermischen Prozesse. Solche Simulationsmethoden bilden ein wichtiges Werkzeug für die weitere Entwicklung effizienter und leistungsfähiger Batteriesysteme.

Die Arbeiten in SiMET werden sowohl der Multiskalarität der Materialien und Komponenten in Batterien als auch der Multidisziplinarität der in ihnen ablaufenden Vorgänge gerecht: Sie befassen sich mit sämtlichen Einheiten von Partikeln innerhalb der mikroporösen Elektroden bis zur kompletten Zelle, mit Größen von wenigen Nanometern bis zu etlichen Zentimetern.

Dabei verbinden sie verschiedene Disziplinen wie Verfahrenstechnik, Elektrotechnik, Maschinenbau, Materialwissenschaften, Chemie, Physik und Mathematik. Die Modelle zielen auf ein breites Spektrum von vor allem ingenieurtechnischen Fragen ab. So sollen sie unter anderem erlauben, das elektrische Betriebsverhalten in einem großen Temperaturbereich zu simulieren, die Wirkung verschiedener innerer Strukturen auf die Leistungsfähigkeit der Zellen aufzeigen und zum Verständnis mechanisch und thermisch induzierter Schädigungseffekte beitragen.

Ergänzend zur modellgestützten Simulation bietet SiMET einen direkten Zugang zu experimentellen Möglichkeiten von der Computertomographie bis zu komplexen elektrochemischen und thermischen Messverfahren. Die Experimente dienen dazu, Parameter zu bestimmen und die Modelle zu validieren.

„Wir freuen uns, dass eine große Gruppe von Doktorandinnen und Doktoranden nun die Möglichkeit erhält, über mehrere Jahre gemeinsam in diesem zukunftsorientierten und anspruchsvollen Themenfeld zu forschen“, erklärt der Sprecher von SiMET, Professor Thomas Wetzel, Leiter des Bereichs Wärme- und Stoffübertragung am Institut für Thermische Verfahrenstechnik (TVT) des KIT. „SiMET wird durch eine enge Zusammenarbeit zwischen den beteiligten Ingenieur- und Naturwissenschaften mit ihren vielfältigen Sichtweisen geprägt. Wir sind überzeugt, dass so beste Voraussetzungen für die Gewinnung neuer Erkenntnisse und die Entwicklung neuer Methoden durch die Promovierenden entstehen.“

An SiMET beteiligt sind, neben Professor Thomas Wetzel als Sprecher, Professor Wolfgang Bessler von der Hochschule Offenburg als stellvertretender Sprecher sowie Professor Willy Dörfler, PD Dr. Gisela Guthausen, Professorin Ellen Ivers-Tiffée, Professor Marc Kamlah, Dr. Reiner Mönig, Professor Hermann Nirschl und Dr. André Weber vom KIT und Professor Arnulf Latz vom Helmholtz-Institut Ulm.

Die Kollegiatinnen und Kollegiaten sollen aus allen genannten wissenschaftlichen Disziplinen kommen. Sie erhalten eine strukturierte Ausbildung auf individueller, kollegübergreifender und internationaler Ebene, unter anderem über interdisziplinäre Betreuungstandems, ein breites fachliches und überfachliches Kursprogramm, spezifische Softwarekurse, Teilnahme an Konferenzen und internationale Forschungsaufenthalte.

Die DFG richtet insgesamt 20 neue Graduiertenkollegs ein. Diese erhalten zusammen rund 87 Millionen Euro Fördermittel in viereinhalb Jahren. Ziel der Graduiertenkollegs ist die Qualifizierung von Doktorandinnen und Doktoranden im Rahmen eines thematisch fokussierten Forschungsprogramms sowie eines strukturierten Qualifizierungskonzepts.

Details zum KIT-Zentrum Energie: http://www.energie.kit.edu

Weiterer Kontakt:
Kosta Schinarakis, PKM – Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.energie.kit.edu
http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektrische Felder steuern Nano-Maschinen 100.000-mal schneller als herkömmliche Methoden
19.01.2018 | Technische Universität München

nachricht Perowskit-Solarzellen: mesoporöse Zwischenschicht mildert Einfluss von Defekten
18.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie