Zwar ist es mehr als zehn Jahre her – doch an den Absturz der Concorde erinnern sich wohl die meisten noch heute – die Fernsehbilder vom brennenden Heck des Überschallfliegers haben sich eingeprägt. Ein auf der Startbahn liegendes Metallstück hatte den Unfall verursacht.
Der Radarsensor spürt sogar wenige Zentimeter große Gegenstände auf den Start- und Landebahnen auf. (© Fraunhofer FHR)
Beim Überfahren des Teils platzte der Reifen des Flugzeugs, die herumfliegenden Trümmer trafen den Treibstofftank, der sofort explodierte – 113 Menschen starben. Um solche Unfälle zu vermeiden, fährt das Flughafenpersonal im Abstand von rund sechs Stunden die Rollfelder ab und prüft, ob dort Gegenstände liegen. Doch die Kontrolle der riesigen Areale ohne technische Hilfsmittel ist zeitaufwändig und fehleranfällig, vor allem bei schlechtem Wetter – etwa wenn Nebel die Sicht erschwert. Auch sind die Kontrollintervalle zu groß.
Ein neues wetterunabhängiges Sicherheitssystem soll künftig die Start- und Lande-bahnen kontinuierlich auf Fremdkörper prüfen und bei Gefahr Alarm auslösen. Forscher der Fraunhofer-Institute für Hochfrequenzphysik und Radartechnik FHR und für Kommunikation, Informationsverarbeitung und Ergonomie FKIE entwickeln das System gemeinsam mit der Uni Siegen, der PMD Technologies GmbH und der Wilhelm Winter GmbH im Projekt LaotSe – kurz für »Flughafen-Start- und Landebahnüberwachung durch multimodale, vernetzte Sensorik«. »Mit unserer Technik hätte das Concorde-Unglück vermieden werden können«, sagt Dr. Helmut Essen, Leiter der Abteilung Millimeterwellenradar und Höchstfrequenzsensorik vom FHR in Wachtberg. »Entlang der Rollbahn installierte Geräte scannen pausenlos die Pisten und spüren selbst kleinste Gegenstände wie Schrauben auf. Dabei schlägt das System nur Alarm, wenn sich ein Objekt über einen längeren Zeitraum auf dem Rollfeld befindet. Eine herumwehende Plastiktüte oder ein Vogel, der sich kurz niederlässt, lösen keine Warnung aus.«
Das System setzt sich aus einer Infrarotkamera, optischen 2-D/3-D-Kameras und vernetzten Radarsensoren zusammen, letztere haben die Forscher am FHR entwickelt. Diese drei Sensortypen ergänzen sich: Das Radar arbeitet tageszeit- und wetterunabhängig. Es kann Objekte zwar aufspüren, aber nicht identifizieren. Kameras eignen sich eher, Gegenstände zu klassifizieren, sie werden jedoch vom Wetter und der Tageszeit beeinflusst. Detektiert der Radarsensor also einen Gegenstand, so signalisiert er den Kameras genauer »hinzuschauen«. Sämtliche Sensordaten werden anschließend mithilfe einer vom FKIE entwickelten Software zusammengeführt und zu einem Lagebild kombiniert. Sensordatenfusion nennen die Experten vom FKIE in Wachtberg diesen Vorgang. Ändert sich der Normalzustand des Lagebilds, wird der Fluglotse im Tower informiert. Er kann dann am Bildschirm kontrollieren, ob tatsächlich Gefahr besteht und den Flugverkehr gegebenenfalls stoppen. »Unsere Lösung ist ein Assistenzsystem, letztendlich entscheidet immer das Flughafenpersonal über die weitere Vorgehensweise«, betont Dr. Wolfgang Koch, Abteilungsleiter am FKIE.
Zwar gibt es bereits ähnliche Radarentwicklungen, diese erkennen jedoch lediglich metallische Fremdkörper und lösen oft Fehlalarme aus. Da sie auf hohen Masten montiert sind, können sie außerdem bei einem Flugzeugunglück leicht beschädigt werden. »Unser Radarsensor sendet mit einer Frequenz von 200 GHz, er erkennt sogar Fremdkörper, die nur ein bis zwei Zentimeter groß sind. Durch den Einsatz der drei verschiedenen Sensortypen lassen sich Falschmeldungen quasi ausschließen.
Das Gerät ist miniaturisiert, es scannt in einer Rundum-Ansicht eine Länge von etwa 700 Metern ab«, erläutert Essen die Vorteile gegenüber existierenden Systemen. Bereits diesen Herbst starten erste Tests mit einem Radarsensor und einer Kamera am Flughafen Köln-Bonn. Bis zum Projektende im April 2012 sind weitere Tests mit mehreren Demonstratoren geplant.
Dr. Helmut Essen | Fraunhofer Mediendienst
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/20/sicherer-start.jsp
Weitere Berichte zu: > Alarm > FKIE > Flughafenpersonal > Fremdkörper > Landebahnen > Radarsensor > Rollbahn > Sensortypen
Netzspannung und Lastströme live und präzise im Blick
24.04.2018 | Karlsruher Institut für Technologie
Seilzugsensor MH60 – erfolgreicher Einsatz in rauer Umgebung
20.04.2018 | WayCon Positionsmesstechnik GmbH
Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.
Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...
Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.
Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
Anzeige
Anzeige
infernum-Tag 2018: Digitalisierung und Nachhaltigkeit
24.04.2018 | Veranstaltungen
Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0
23.04.2018 | Veranstaltungen
Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?
23.04.2018 | Veranstaltungen
Silizium als neues Speichermaterial für die Akkus der Zukunft
25.04.2018 | HANNOVER MESSE
IAB-Arbeitsmarktbarometer: Trotz Dämpfer auf gutem Niveau
25.04.2018 | Wirtschaft Finanzen
AWI-Forscher messen Rekordkonzentration von Mikroplastik im arktischen Meereis
25.04.2018 | Geowissenschaften