Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sichere Lithium-Ionenbatterie aus Keramik

13.03.2015

Feststoff-Lithium-Ionen-Akkus gelten als sichere Batterien der Zukunft. Der Ersatz des flüssigen Elektrolyten durch einen Feststoff ermöglicht hohe Energiedichten und entschärft Probleme wie Auslaufen, Überhitzen, Abbrand und Giftigkeit, mit denen heutige Lithium-Ionen-Akkus immer wieder zu kämpfen haben. Jülicher Wissenschaftler haben nun eine Zelle vorgestellt, die im Labormaßstab schon erstaunlich gut funktioniert. Besonderes Augenmerk lag dabei auf der Verbesserung der Grenzfläche zwischen festem Elektrolyt- und Elektrodenmaterial, eine der größten Herausforderungen bei der Optimierung für praktische Anwendungen wie die Elektromobilität.

Die Jülicher Feststoff-Lithium-Ionenbatterie hat es in sich, auch wenn man ihr Potenzial nicht unbedingt auf den ersten Blick erkennt. Die Zelle wurde im Labor über 350-mal entladen und wieder aufgeladen. Sie ist der Vorläufer einer neuen Generation von Lithium-Ionen-Akkus, in denen anstelle der brennbaren und oft giftigen Flüssigkeiten ein fester Elektrolyt zum Einsatz kommt.


Fertig konfektionierte Festkörperbatterie (Kathodenmaterial Lithium-Kobalt-Oxid, Elektrolyt: teilsubstituiertes Lithium-Lanthan-Zirkonat, Anode: Lithium-Metall)

Forschungszentrum Jülich


Dr. Chih-Long Tsai, Wissenschaftlicher Mitarbeiter am Jülicher Institut für Energie- und Klimaforschung (IEK-1), mit Keramik-Elektrolyt

Forschungszentrum Jülich

Diese Bauweise bringt viele Vorteile mit sich: „Die Zellen können bei Unfällen und Fehlern nicht in Brand geraten und nicht auslaufen. Sie könnten eine deutlich längere Lebensdauer haben und sind auf jeden Fall weniger temperaturempfindlich“, erläutert Prof. Olivier Guillon vom Jülicher Institut für Energie- und Klimaforschung.

Lithium-Ionenbatterien sind insbesondere für mobile Anwendungen wie tragbare Elektrogeräte und Fahrzeuge die erste Wahl. Grund ist in erster Linie ihre hohe Energiedichte. „Mit Feststoff-Lithium-Ionenbatterien lässt sich die Energiedichte noch deutlich steigern, denn die Zellen lassen sich übereinander stapeln“, so der Leiter des Bereichs Werkstoffsynthese und Herstellungsverfahren (IEK-1).

Anders als herkömmliche Akkus mit Flüssig-Elektrolyt benötigen die unbedenklichen und mechanisch unempfindlichen Festkörper-Batterien keine platzraubenden Kühl- und Schutzvorrichtungen. Selbst die unvermeidlich auftretenden Stöße und Vibrationen bei Anwendungen im Automobilbereich verkraften sie ohne aufwendige Stützkonstruktionen, die für konventionelle Flüssigzellbatterien erforderlich sind.

Spezialkeramik als Elektrolyt

Aufgabe des Elektrolyten ist es, Lithium-Ionen während des Entladens von der Anode zur Kathode zu leiten und die beiden Pole gleichzeitig elektrisch zu isolieren. Anstelle einer Flüssigkeit kann auch ein Festkörper diese Funktion übernehmen. Dafür geeignete Materialien weisen Leerstellen in ihrer atomaren Gitterstruktur auf. Lithium-Ionen können sie besetzen und sich so „hüpfend“ durch den Festkörper bewegen.

„Der Mechanismus läuft allerdings etwas langsamer ab als die Diffusionsvorgänge innerhalb eines flüssigen Elektrolyten. Das erhöht den Widerstand für den Ionentransport, was die abrufbare Leistungsdichte der Batterie verringert“, erläutert Dr. Sven Uhlenbruck. „Diese schlechtere spezifische Leitfähigkeit lässt sich aber im Prinzip durch die Ausführung des Elektrolyten als dünne Schicht ausgleichen. Unser Ziel ist es, die Dicke des Feststoffelektrolyten auf wenige Mikrometer zu reduzieren, während die Elektroden in konventionellen Zellen mit Flüssig-Elektrolyt rund 30 Mikrometer auseinander liegen“, erklärt der Jülicher Physiker.

Grenzfläche im Fokus

Eine größere technische Schwierigkeit stellt dagegen die Gestaltung der Grenzfläche zwischen den festen Elektroden und dem ebenfalls festen Elektrolyten dar. Einen flüssigen Elektrolyten können feinstrukturierte Elektroden wie ein Schwamm aufnehmen. Doch zwei angrenzende Festkörper lassen sich nicht so einfach lückenlos miteinander verbinden. Der Übergangswiderstand zwischen Elektroden und Elektrolyt fällt entsprechend höher aus. „Durch Abstimmung der Herstellungsverfahren ist es uns gelungen, den Gesamtinnenwiderstand der Zelle von 20 Kiloohm auf 2 Kiloohm pro Quadratzentimeter zu reduzieren“, berichtet Sven Uhlenbruck. Die Forschung geht weiter. Ziel ist es, durch Verringerung der Elektrolytdicke die Werte heutiger Lithium-Ionenbatterien von 50 Ohm pro Quadratzentimeter zu erreichen, wobei die Energiedichte aufgrund der Materialeinsparung dann deutlich höher ausfallen dürfte – schöne Aussichten also für alle mobile Geräten, deren Laufzeit sich dadurch beträchtlich verlängern ließe.

Die detaillierten Ergebnisse wurden in der März-Ausgabe des Fachmagazins „Nachrichten aus der Chemie“ und in der Fachzeitschrift „Journal of Power Sources“ (DOI: 10.1016/j.jpowsour.2015.02.003) veröffentlicht.

Originalpublikationen
Batterien mit Festkörperelektrolyt
D. Weber, S. Uhlenbruck
Physikalische Chemie (2015), Nachr. Chem., 63: 315–326, DOI: 10.1002/nadc.201590094
Abstract: http://onlinelibrary.wiley.com/doi/10.1002/nadc.201590094/abstract

Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films
A. Bünting, S. Uhlenbruck, C. Dellen, M. Finsterbusch, C.-L. Tsai, D. Sebold, H.P. Buchkremer, R. Vaßen
Journal of Power Sources, Volume 281, 1 May 2015, Pages 326-33, doi:10.1016/j.jpowsour.2015.02.003
Article: http://www.sciencedirect.com/science/article/pii/S0378775315002268

Weitere Informationen:
Forschung am Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1): http://www.fz-juelich.de/iek/iek-1/DE/Home/home_node.html

Ansprechpartner:
Dr. Sven Uhlenbruck, Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. + 49 2461 61-5984
s.uhlenbruck@fz-juelich.de

Prof. Dr. Olivier Guillon, Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. + 49 2461 61-5181
o.guillon@fz-juelich.de

Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-13Festst...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Weltweit erste Solarstraße in Frankreich eingeweiht
16.01.2017 | Wissenschaftliche Abteilung, Französische Botschaft in der Bundesrepublik Deutschland

nachricht Greifswalder Plasmaforscher erforschen Nanomaterialien für effiziente Energiespeicherung
13.01.2017 | Leibniz-Institut für Plasmaforschung und Technologie e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

moove und Sony Lifelog machen mobil

17.01.2017 | Unternehmensmeldung

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften