Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sichere Lithium-Ionenbatterie aus Keramik

13.03.2015

Feststoff-Lithium-Ionen-Akkus gelten als sichere Batterien der Zukunft. Der Ersatz des flüssigen Elektrolyten durch einen Feststoff ermöglicht hohe Energiedichten und entschärft Probleme wie Auslaufen, Überhitzen, Abbrand und Giftigkeit, mit denen heutige Lithium-Ionen-Akkus immer wieder zu kämpfen haben. Jülicher Wissenschaftler haben nun eine Zelle vorgestellt, die im Labormaßstab schon erstaunlich gut funktioniert. Besonderes Augenmerk lag dabei auf der Verbesserung der Grenzfläche zwischen festem Elektrolyt- und Elektrodenmaterial, eine der größten Herausforderungen bei der Optimierung für praktische Anwendungen wie die Elektromobilität.

Die Jülicher Feststoff-Lithium-Ionenbatterie hat es in sich, auch wenn man ihr Potenzial nicht unbedingt auf den ersten Blick erkennt. Die Zelle wurde im Labor über 350-mal entladen und wieder aufgeladen. Sie ist der Vorläufer einer neuen Generation von Lithium-Ionen-Akkus, in denen anstelle der brennbaren und oft giftigen Flüssigkeiten ein fester Elektrolyt zum Einsatz kommt.


Fertig konfektionierte Festkörperbatterie (Kathodenmaterial Lithium-Kobalt-Oxid, Elektrolyt: teilsubstituiertes Lithium-Lanthan-Zirkonat, Anode: Lithium-Metall)

Forschungszentrum Jülich


Dr. Chih-Long Tsai, Wissenschaftlicher Mitarbeiter am Jülicher Institut für Energie- und Klimaforschung (IEK-1), mit Keramik-Elektrolyt

Forschungszentrum Jülich

Diese Bauweise bringt viele Vorteile mit sich: „Die Zellen können bei Unfällen und Fehlern nicht in Brand geraten und nicht auslaufen. Sie könnten eine deutlich längere Lebensdauer haben und sind auf jeden Fall weniger temperaturempfindlich“, erläutert Prof. Olivier Guillon vom Jülicher Institut für Energie- und Klimaforschung.

Lithium-Ionenbatterien sind insbesondere für mobile Anwendungen wie tragbare Elektrogeräte und Fahrzeuge die erste Wahl. Grund ist in erster Linie ihre hohe Energiedichte. „Mit Feststoff-Lithium-Ionenbatterien lässt sich die Energiedichte noch deutlich steigern, denn die Zellen lassen sich übereinander stapeln“, so der Leiter des Bereichs Werkstoffsynthese und Herstellungsverfahren (IEK-1).

Anders als herkömmliche Akkus mit Flüssig-Elektrolyt benötigen die unbedenklichen und mechanisch unempfindlichen Festkörper-Batterien keine platzraubenden Kühl- und Schutzvorrichtungen. Selbst die unvermeidlich auftretenden Stöße und Vibrationen bei Anwendungen im Automobilbereich verkraften sie ohne aufwendige Stützkonstruktionen, die für konventionelle Flüssigzellbatterien erforderlich sind.

Spezialkeramik als Elektrolyt

Aufgabe des Elektrolyten ist es, Lithium-Ionen während des Entladens von der Anode zur Kathode zu leiten und die beiden Pole gleichzeitig elektrisch zu isolieren. Anstelle einer Flüssigkeit kann auch ein Festkörper diese Funktion übernehmen. Dafür geeignete Materialien weisen Leerstellen in ihrer atomaren Gitterstruktur auf. Lithium-Ionen können sie besetzen und sich so „hüpfend“ durch den Festkörper bewegen.

„Der Mechanismus läuft allerdings etwas langsamer ab als die Diffusionsvorgänge innerhalb eines flüssigen Elektrolyten. Das erhöht den Widerstand für den Ionentransport, was die abrufbare Leistungsdichte der Batterie verringert“, erläutert Dr. Sven Uhlenbruck. „Diese schlechtere spezifische Leitfähigkeit lässt sich aber im Prinzip durch die Ausführung des Elektrolyten als dünne Schicht ausgleichen. Unser Ziel ist es, die Dicke des Feststoffelektrolyten auf wenige Mikrometer zu reduzieren, während die Elektroden in konventionellen Zellen mit Flüssig-Elektrolyt rund 30 Mikrometer auseinander liegen“, erklärt der Jülicher Physiker.

Grenzfläche im Fokus

Eine größere technische Schwierigkeit stellt dagegen die Gestaltung der Grenzfläche zwischen den festen Elektroden und dem ebenfalls festen Elektrolyten dar. Einen flüssigen Elektrolyten können feinstrukturierte Elektroden wie ein Schwamm aufnehmen. Doch zwei angrenzende Festkörper lassen sich nicht so einfach lückenlos miteinander verbinden. Der Übergangswiderstand zwischen Elektroden und Elektrolyt fällt entsprechend höher aus. „Durch Abstimmung der Herstellungsverfahren ist es uns gelungen, den Gesamtinnenwiderstand der Zelle von 20 Kiloohm auf 2 Kiloohm pro Quadratzentimeter zu reduzieren“, berichtet Sven Uhlenbruck. Die Forschung geht weiter. Ziel ist es, durch Verringerung der Elektrolytdicke die Werte heutiger Lithium-Ionenbatterien von 50 Ohm pro Quadratzentimeter zu erreichen, wobei die Energiedichte aufgrund der Materialeinsparung dann deutlich höher ausfallen dürfte – schöne Aussichten also für alle mobile Geräten, deren Laufzeit sich dadurch beträchtlich verlängern ließe.

Die detaillierten Ergebnisse wurden in der März-Ausgabe des Fachmagazins „Nachrichten aus der Chemie“ und in der Fachzeitschrift „Journal of Power Sources“ (DOI: 10.1016/j.jpowsour.2015.02.003) veröffentlicht.

Originalpublikationen
Batterien mit Festkörperelektrolyt
D. Weber, S. Uhlenbruck
Physikalische Chemie (2015), Nachr. Chem., 63: 315–326, DOI: 10.1002/nadc.201590094
Abstract: http://onlinelibrary.wiley.com/doi/10.1002/nadc.201590094/abstract

Influence of titanium nitride interlayer on the morphology, structure and electrochemical performance of magnetron-sputtered lithium iron phosphate thin films
A. Bünting, S. Uhlenbruck, C. Dellen, M. Finsterbusch, C.-L. Tsai, D. Sebold, H.P. Buchkremer, R. Vaßen
Journal of Power Sources, Volume 281, 1 May 2015, Pages 326-33, doi:10.1016/j.jpowsour.2015.02.003
Article: http://www.sciencedirect.com/science/article/pii/S0378775315002268

Weitere Informationen:
Forschung am Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1): http://www.fz-juelich.de/iek/iek-1/DE/Home/home_node.html

Ansprechpartner:
Dr. Sven Uhlenbruck, Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. + 49 2461 61-5984
s.uhlenbruck@fz-juelich.de

Prof. Dr. Olivier Guillon, Institut für Energie- und Klimaforschung, Bereich, Werkstoffsynthese und Herstellungsverfahren (IEK-1)
Tel. + 49 2461 61-5181
o.guillon@fz-juelich.de

Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-13Festst...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher vereinfachen Installation und Programmierung von Robotersystemen
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Care-O-bot® 4 macht sich selbstständig
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik