Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensorentwicklung im luftleeren Raum

19.12.2008
Professur für Mikrosystem- und Gerätetechnik der TU Chemnitz führt mit einem neuen Messsystem jetzt Mikrostrukturanalysen auch im Vakuum durch

In Digitalkameras, Handys und Spielekonsolen kommen sie zum Einsatz, in Fahrzeugen überwachen sie das Kurvenverhalten - Drehratesensoren, für deren Entwicklung mikrotechnische Untersuchungen im luftleeren Raum nötig sind.

An der Professur für Mikrosystem- und Gerätetechnik der TU Chemnitz steht nun ein Messsystem zur Verfügung, mit dem das Bewegungsverhalten von Mikrostrukturen auch im Vakuum untersucht werden kann.

"Das neue System, finanziert durch das Hochschulbauförderungsgesetz, gehört zum Besten, was die Analysetechnik für Mikrosysteme gegenwärtig zu bieten hat", schätzt Prof. Dr. Jan Mehner, Inhaber der Professur, ein. Das Messsystem besteht aus einem so genannten Micro System Analyzer der Firma Polytec und einer dafür speziell angepassten Vakuum-Kammer der Firma SÜSS MicroTec.

Untersuchungen im Vakuum sind für moderne Mikrosysteme notwendig, bei denen bewegliche Siliziumstrukturen in einem luftdicht verkappten Gehäuse bei vermindertem Druck betrieben werden. Diese Gehäusetechnologien kommen insbesondere für Sensoren zum Einsatz, bei denen das miniaturisierte Wandlerelement ein in Resonanz schwingendes Feder-Masse-System ist. Bei normalem Luftdruck liegt die Resonanzverstärkung der Schwingungsamplituden zwischen 10 und 100.

Gelingt es, den Druck im Gehäuse langzeitstabil auf Werte unter einem Millibar abzusenken, kann die Resonanzverstärkung der Siliziumschwinger um den Faktor 100 erhöht werden. Dadurch werden die Signale und damit die Empfindlichkeit der Sensoren deutlich verbessert. Dank dieser Technologie wurde es beispielsweise möglich, große und teure Kreiselsysteme, so genannte Gyroskope, die zur Navigation in der Luft- und Raumfahrt verwendet werden, soweit zu verkleinern, dass sie als mikromechanische Lösung in einem elektronischen Bauelement Platz finden.

Bei diesen als Drehratesensoren bekannten Bauelementen wird die Resonanzverstärkung genutzt, um die extrem kleinen Corioliskräfte zur Messung der Winkelgeschwindigkeit und damit für die Richtungserkennung nutzbar zu machen. An der Entwicklung solcher Sensoren ist die Professur für Mikrosystem- und Gerätetechnik der TU Chemnitz seit Jahren beteiligt. Miniaturisierte Drehratesensoren sind heute in nahezu allen Kraftfahrzeugen zu finden: Als elektronische Stabilitätskontrolle (ESP) überwachen sie das Fahrverhalten in Kurven und tragen so zur Unfallvermeidung bei. Außerdem werden solche Mikrosysteme immer mehr für Konsumgüter entwickelt. Typische Anwendungen sind Bildstabilisatoren für Digitalkameras, Mikroschwenkspiegel für zukünftige Projektionssysteme in Handys oder Sensoren zur Bewegungserkennung in Spielekonsolen.

"Die Auflösung unseres neu installierten Messsystems ist bemerkenswert. Bewegungsamplituden von wenigen Nanometern können selbst bei Frequenzen bis in den Megahertzbereich gemessen werden", berichtet Mehner und ergänzt: "Die Kombination zweier Messverfahren für vertikale und horizontale Bewegungen in einem Gerät ermöglicht erstmals eine numerische Rekonstruktion der tatsächlichen dreidimensionalen Schwingungen der winzigen Formelemente bei verschiedenen Druck- und Temperaturbedingungen." An der Professur für Mikrosystem- und Gerätetechnik wird es dadurch möglich, das theoretisch berechnete Verhalten von Mikrosensoren experimentell zu überprüfen und Simulationsergebnisse zu bestätigen. Geplant sind zukünftig Forschungsarbeiten zu den verschiedenen Dämpfungsmechanismen von Mikrostrukturen im Vakuum. "Ab 2009 wird sich ein Doktorand mit diesem Thema beschäftigen. Sensorhersteller und Anwender haben schon jetzt großes Interesse an den Ergebnissen dieser Arbeiten bekundet und finanzieren einen Teil der Forschungsleistungen", freut sich Mehner.

Weitere Informationen erteilt Prof. Dr. Jan Mehner, Telefon 0371 531-24430, E-Mail jan.mehner@etit.tu-chemnitz.de

Katharina Thehos | idw
Weitere Informationen:
http://www.tu-chemnitz.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Geothermie: Den Sommer im Winter ernten
18.01.2017 | Karlsruher Institut für Technologie

nachricht Tierschutz auf hoher See
17.01.2017 | Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Auf die richtige Behandlung kommt es an

19.01.2017 | Seminare Workshops

Grundlagen der Akustik, Virtuelle Akustik, Lärmminderung, Fahrzeugakustik, Psychoakustik, Produkt Sound Design und Messtechnik

19.01.2017 | Seminare Workshops

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie