Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensor zeigt Enge in lebenden Zellen an

05.01.2015

Proteine und andere Biomoleküle werden oft ausschließlich im Reagenzglas in wässrigen Lösungen untersucht. Es ist jedoch nicht klar, ob diese experimentellen Studien auf die dicht-gepackte zelluläre Umgebung übertragbar sind.

Bochumer Forscher haben eine neue Methode entwickelt, mit der sich diese Effekte der Enge in lebenden Zellen erstmals mikroskopisch untersuchen lassen. Sie entwickelten einen Sensor, der je nach Enge in der Zelle seine Farbe wechselt.

Die dicht gepackte zelluläre Umgebung

Proteine haben mannigfaltige Funktionen innerhalb der Zelle. Verschiedenste Proteine übernehmen Aufgaben der Strukturbildung, der Katalyse chemischer Reaktionen oder der Übermittlung von zellulären Signalen. Schon geringe Fehler in Proteinen können schwerwiegende Folgen haben: Sie sind zum Beispiel für Krankheiten wie Alzheimer, Parkinson oder Chorea Huntington verantwortlich. Für die biochemische und medizinische Forschung sind Proteine daher äußerst interessant.

Für die Untersuchung werden sie jedoch oft aus ihrer natürlichen Arbeitsumgebung isoliert, um sie in wässrigen Lösungen zu analysieren. „Dabei wird aber vernachlässigt, dass die Umgebung der Zelle eine dicht gepackte Matrix ist, die aus diversen Makromolekülen sowie kleinen organischen und anorganischen Stoffen besteht, sodass das Innere einer Zelle äußerst zähflüssig und hochkonzentriert ist“, erklärt Simon Ebbinghaus. „Daraus ergibt sich die Frage, ob die analytischen Methoden in wässrigen Lösungen das natürliche Verhalten der Proteine in der zellulären Umgebung widerspiegeln können.“

Theorie: Platzmangel in der Zelle komprimiert Biomoleküle

Die gebräuchlichste Theorie, um die Effekte der zellulären Umgebung zu beschreiben, ist die „Excluded Volume“-Theorie. Vereinfacht erklärt: Wenn in der Weihnachtszeit die Weihnachtsmärkte, Kaufhäuser oder öffentlichen Verkehrsmittel überlaufen sind, versucht jeder den Kontakt mit dem unbekannten Nachbarn zu vermeiden, indem er eine möglichst kompakte Körperhaltung einnimmt. Diese Form der Abstoßung lässt sich auf Proteine übertragen, welche somit in dicht gepackten Umgebungen eine kompaktere Struktur einnehmen. Da Proteine je kompakter desto stabiler sind, sagt die Theorie eine erhöhte Stabilität innerhalb der Zelle voraus.

Sensor leuchtet in verschiedenen Farben

Um diese Effekte besser zu verstehen, haben die RUB-Forscher eine Methode entwickelt, um die Kompression eines Makromoleküls in der Zelle zu verfolgen. Ein mit Farbstoffen markiertes Polymer dient dabei als Sensor. Wird er durch Enge zusammengedrückt, rücken die Farbstoffe näher zusammen und unter dem Mikroskop ändert sich die Frequenz des gemessenen Lichts. „Schaut man nur auf das Licht, stellt man bei größerer Enge eine Veränderung von Grün nach Rot fest“, beschreibt Simon Ebbinghaus.

Überraschung in der lebenden Zelle

Mit Hilfe verschiedener makromolekularer Zusätze (Crowding Reagenzien), mit denen sie eine vorher festgelegte Enge herstellten, konnten die RUB-Forscher im Reagenzglas zeigen, dass der Sensor funktioniert und besonders sensitiv auf die dicht gepackte Umgebung reagiert. Anschließend injizierten sie den Sensor in lebende Zellen und erlebten eine Überraschung: Entgegen der Erwartung zeigte sich, dass der Sensor, dass in der Zelle eine Kraft herrscht, die seine kompakte Form „auseinanderzieht“. Das deutet darauf hin, dass innerhalb der Zelle Anziehungskräfte herrschen, die die theoretisch vorhergesagten Kompressions-Effekte überlagern.

Zelle unter Stress: Proteine und Funktionen verändern sich

Die Forscher setzten die Zelle dann unter sogenannten osmotischen Stress, indem sie die Salzkonzentration in der Umgebung erhöhten. Die Zelle reagiert darauf, indem sie Wasser abgibt – die Folge ist eine noch größere Enge im Inneren. Dieser osmotische Stress verstärkte die zellulären Kompressionseffekte deutlich. „Solche Veränderungen in der zellulären Umgebung könnten drastische Folgen haben und Protein-Funktionen nachhaltig beeinflussen“, erläutert Simon Ebbinghaus. „Auch andere Formen von Stress – zum Beispiel durch ungefaltete oder fehlgefaltete Proteine, die sich in bestimmten Bereichen der Zelle anhäufen, könnten die zelluläre Umgebung ähnlich verändern. Solche Veränderungen könnten Protein-Verklumpungen fördern, die in der Entstehung neurodegenerativer Erkrankungen eine entscheidende Rolle spielen.“

Kooperation von RUB und MPI

Ihre Ergebnisse berichten die Forscher in der Zeitschrift Angewandte Chemie sowie Angewandte Chemie International Edition. Sie resultieren aus einer Kooperation im Rahmen des Exzellenzclusters RESOLV zwischen der RUB und dem Max-Planck-Institut für Kohlenforschung (Dr. Matthias Heyden).

Förderung

Die Arbeiten wurden durch das Rückkehrerprogramm des Ministeriums für Innovation, Wissenschaft und Forschung des Landes NRW, den Exzellenzcluster RESOLV (EXC 1069) der Deutschen Forschungsgemeinschaft sowie die Internationale Graduiertenschule für Neurowissenschaften (IGSN) gefördert.

Titelaufnahme

D. Gnutt, M. Gao, O. Brylski, M. Heyden, S. Ebbinghaus (2014): Excluded volume effects in the living cell. Angewandte Chemie International Edition, DOI: 10.1002/anie.201409847

D. Gnutt, M. Gao, O. Brylski, M. Heyden, S. Ebbinghaus (2014): Effekte des Volumenausschlusses in lebenden Zellen. Angewandte Chemie, DOI: 10.1002/ange.201409847

Weitere Informationen

Jun.-Prof. Dr. Simon Ebbinghaus, Lehrstuhl für Physikalische Chemie II, NBCF 03/492, Tel. 0234/32-25533 Simon.Ebbinghaus@rub.de

Redaktion: Meike Drießen

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Elektromobilität: Forschungen des Fraunhofer LBF ebnen den Weg in die Alltagstauglichkeit
27.03.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Wärme in Strom: Thermoelektrische Generatoren aus Nanoschichten
16.03.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit