Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sensor zeigt Enge in lebenden Zellen an

05.01.2015

Proteine und andere Biomoleküle werden oft ausschließlich im Reagenzglas in wässrigen Lösungen untersucht. Es ist jedoch nicht klar, ob diese experimentellen Studien auf die dicht-gepackte zelluläre Umgebung übertragbar sind.

Bochumer Forscher haben eine neue Methode entwickelt, mit der sich diese Effekte der Enge in lebenden Zellen erstmals mikroskopisch untersuchen lassen. Sie entwickelten einen Sensor, der je nach Enge in der Zelle seine Farbe wechselt.

Die dicht gepackte zelluläre Umgebung

Proteine haben mannigfaltige Funktionen innerhalb der Zelle. Verschiedenste Proteine übernehmen Aufgaben der Strukturbildung, der Katalyse chemischer Reaktionen oder der Übermittlung von zellulären Signalen. Schon geringe Fehler in Proteinen können schwerwiegende Folgen haben: Sie sind zum Beispiel für Krankheiten wie Alzheimer, Parkinson oder Chorea Huntington verantwortlich. Für die biochemische und medizinische Forschung sind Proteine daher äußerst interessant.

Für die Untersuchung werden sie jedoch oft aus ihrer natürlichen Arbeitsumgebung isoliert, um sie in wässrigen Lösungen zu analysieren. „Dabei wird aber vernachlässigt, dass die Umgebung der Zelle eine dicht gepackte Matrix ist, die aus diversen Makromolekülen sowie kleinen organischen und anorganischen Stoffen besteht, sodass das Innere einer Zelle äußerst zähflüssig und hochkonzentriert ist“, erklärt Simon Ebbinghaus. „Daraus ergibt sich die Frage, ob die analytischen Methoden in wässrigen Lösungen das natürliche Verhalten der Proteine in der zellulären Umgebung widerspiegeln können.“

Theorie: Platzmangel in der Zelle komprimiert Biomoleküle

Die gebräuchlichste Theorie, um die Effekte der zellulären Umgebung zu beschreiben, ist die „Excluded Volume“-Theorie. Vereinfacht erklärt: Wenn in der Weihnachtszeit die Weihnachtsmärkte, Kaufhäuser oder öffentlichen Verkehrsmittel überlaufen sind, versucht jeder den Kontakt mit dem unbekannten Nachbarn zu vermeiden, indem er eine möglichst kompakte Körperhaltung einnimmt. Diese Form der Abstoßung lässt sich auf Proteine übertragen, welche somit in dicht gepackten Umgebungen eine kompaktere Struktur einnehmen. Da Proteine je kompakter desto stabiler sind, sagt die Theorie eine erhöhte Stabilität innerhalb der Zelle voraus.

Sensor leuchtet in verschiedenen Farben

Um diese Effekte besser zu verstehen, haben die RUB-Forscher eine Methode entwickelt, um die Kompression eines Makromoleküls in der Zelle zu verfolgen. Ein mit Farbstoffen markiertes Polymer dient dabei als Sensor. Wird er durch Enge zusammengedrückt, rücken die Farbstoffe näher zusammen und unter dem Mikroskop ändert sich die Frequenz des gemessenen Lichts. „Schaut man nur auf das Licht, stellt man bei größerer Enge eine Veränderung von Grün nach Rot fest“, beschreibt Simon Ebbinghaus.

Überraschung in der lebenden Zelle

Mit Hilfe verschiedener makromolekularer Zusätze (Crowding Reagenzien), mit denen sie eine vorher festgelegte Enge herstellten, konnten die RUB-Forscher im Reagenzglas zeigen, dass der Sensor funktioniert und besonders sensitiv auf die dicht gepackte Umgebung reagiert. Anschließend injizierten sie den Sensor in lebende Zellen und erlebten eine Überraschung: Entgegen der Erwartung zeigte sich, dass der Sensor, dass in der Zelle eine Kraft herrscht, die seine kompakte Form „auseinanderzieht“. Das deutet darauf hin, dass innerhalb der Zelle Anziehungskräfte herrschen, die die theoretisch vorhergesagten Kompressions-Effekte überlagern.

Zelle unter Stress: Proteine und Funktionen verändern sich

Die Forscher setzten die Zelle dann unter sogenannten osmotischen Stress, indem sie die Salzkonzentration in der Umgebung erhöhten. Die Zelle reagiert darauf, indem sie Wasser abgibt – die Folge ist eine noch größere Enge im Inneren. Dieser osmotische Stress verstärkte die zellulären Kompressionseffekte deutlich. „Solche Veränderungen in der zellulären Umgebung könnten drastische Folgen haben und Protein-Funktionen nachhaltig beeinflussen“, erläutert Simon Ebbinghaus. „Auch andere Formen von Stress – zum Beispiel durch ungefaltete oder fehlgefaltete Proteine, die sich in bestimmten Bereichen der Zelle anhäufen, könnten die zelluläre Umgebung ähnlich verändern. Solche Veränderungen könnten Protein-Verklumpungen fördern, die in der Entstehung neurodegenerativer Erkrankungen eine entscheidende Rolle spielen.“

Kooperation von RUB und MPI

Ihre Ergebnisse berichten die Forscher in der Zeitschrift Angewandte Chemie sowie Angewandte Chemie International Edition. Sie resultieren aus einer Kooperation im Rahmen des Exzellenzclusters RESOLV zwischen der RUB und dem Max-Planck-Institut für Kohlenforschung (Dr. Matthias Heyden).

Förderung

Die Arbeiten wurden durch das Rückkehrerprogramm des Ministeriums für Innovation, Wissenschaft und Forschung des Landes NRW, den Exzellenzcluster RESOLV (EXC 1069) der Deutschen Forschungsgemeinschaft sowie die Internationale Graduiertenschule für Neurowissenschaften (IGSN) gefördert.

Titelaufnahme

D. Gnutt, M. Gao, O. Brylski, M. Heyden, S. Ebbinghaus (2014): Excluded volume effects in the living cell. Angewandte Chemie International Edition, DOI: 10.1002/anie.201409847

D. Gnutt, M. Gao, O. Brylski, M. Heyden, S. Ebbinghaus (2014): Effekte des Volumenausschlusses in lebenden Zellen. Angewandte Chemie, DOI: 10.1002/ange.201409847

Weitere Informationen

Jun.-Prof. Dr. Simon Ebbinghaus, Lehrstuhl für Physikalische Chemie II, NBCF 03/492, Tel. 0234/32-25533 Simon.Ebbinghaus@rub.de

Redaktion: Meike Drießen

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Geräteschutzschalter erfüllt NEC Class 2
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Elektronikgehäuse für Anzeigeeinheiten
19.05.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten