Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller Tanz in der Elektronenwolke

17.12.2013
Noch ist es Zukunftsmusik. Neuartige Medikamente und Chemikalien, mit Lichtteilchen arbeitende Computer, die viel schneller funktionieren als ihre heutigen Vertreter – all das könnte eines Tages Realität werden.

Den Weg dorthin ebnen auch Wissenschaftler am Berliner Max-Born-Institut (MBI). Weltweit erstmals ist es ihnen jetzt gelungen, ultraschnelle Elektronenbewegungen in neutralen Molekülen experimentell sichtbar zu machen. Dies ist ein wichtiger Schritt, um eines Tages chemische Prozesse viel genauer kontrollieren zu können, als dies derzeit möglich ist.


Extrem kurze Laser-Pulse verändern die Elektronenwolken von Molekülen.
Foto: MBI

„Bis heute ist es nur sehr begrenzt möglich, chemische Reaktionen zu steuern“, sagt Professor Marc Vrakking, in dessen neuen Attosekunden-Laboratorien am MBI der Durchbruch gelang. Es habe zwar schon früher Versuche mit farbigem Licht gegeben, aber das sei meist erfolglos geblieben. Die übertragene Energie habe sich zu rasch im Molekül verteilt und dann gebe es keinen Effekt mehr.

„Mit den neuen Attosekunden-Ansätzen gibt es die Hoffnung, die Elektronen direkt zu steuern“, erläutert Christian Neidel, der die Versuche mit Kollegen am MBI, aus Lyon (Frankreich) und Lund (Schweden) durchführte. „An einfachen Molekülen haben wir schon gezeigt, dass das möglich ist.“ Die Experimente des Max-Born-Teams, die jetzt in der Fachzeitschrift Physical Review Letters veröffentlicht wurden, erfolgten mit Kohlendioxid CO2, Stickstoff N2 und Ethen C2H4.

Die Attosekunden-Physik arbeitet mit unvorstellbar kurzen Lichtblitzen. Denn eine Attosekunde ist der millionste Teil eines millionstel Teils einer millionstel Sekunde. Das Licht schafft es in dieser Zeit gerade mal von einem Ende eines kleinen Moleküls zum anderen. Damit kann man in die Elektronenwolke von Atomen und Molekülen hineinblicken, die Vorgänge filmen und sogar manipulieren. Erst seit 2001 gibt es diese Möglichkeit, tief in die geheimnisvolle Quantenwelt schneller Elektronen einzudringen. Dafür werden sogenannte Pumpe-Probe-Techniken benutzt, bei denen kurz nacheinander zwei Laserblitze in das Atom oder Molekül geschickt werden.

Die neuen Arbeiten, um die Dynamiken der Elektronen in neutralen Molekülen zu messen, basieren auf einem raffinierten Trick, der sich „dynamische Ausrichtung“ nennt. Dabei wird das Molekül einer moderat starken Laserstrahlung ausgesetzt, die einen Dipol im Molekül erzeugt. Dadurch richtet sich das Molekül entlang der Polarisationsachse des Laserlichtes aus.

Es wird quasi festgehalten, um den günstigsten Winkel für einen Folgeprozess –, beispielsweise die Ionisation, also das Herausschießen eines Elektrons – kontrollieren zu können.

Bei herkömmlichen chemischen Reaktionen sind nur die äußeren Elektronen beteiligt. Im Pumpe-Probe-Experiment konnten zeitabhängige Signale gemessen werden, weil der Laser, der das Molekül ausrichtet, die Dichte der Elektronen auch in der Nähe der Atomkerne beeinflussen kann. Wieso ist es dann aber einfacher, Elektronen herauszuschießen, die sich dicht an den Atomkernen aufhalten? Die Ursache liegt in der Quantenphysik begründet.

Denn freie Elektronen lassen sich überhaupt nicht durch einen Laserstrahl anregen, sie können keine Photonen aufnehmen. Damit Elektronen Lichtteilchen absorbieren können, setzt die Quantenphysik klare Bedingungen, wie Professor Vrakking erläutert. Ein Photon hat eine bestimmte Energie und einen Impuls, die aufgenommen werden müssen.

Das Elektron kann nur dann Energie aufnehmen, wenn es einen zweiten Wechselwirkungspartner hat, also sich in einem Atom oder Molekül befindet. Der Atomkern hilft also dabei, Energie und Impuls aufzunehmen. Je näher sich das Elektron am Atomkern befindet, umso leichter ist es Energiepakete auf das Elektron zu übertragen. Auf diese Weise konnte eine Art Film der Elektronen-Bewegungen unter dem Einfluss des Ausrichtungslasers gedreht werden.

In der Attosekundenphysik waren die Wissenschaftler die ersten Jahre erst einmal damit beschäftigt, die neue Technik zu entwickeln. Seit gut sechs Jahren nimmt nun die Molekül- und Materialforschung Fahrt auf, es herrscht Aufbruchsstimmung. Ganz neu sind Experimente zur Manipulation von Stromflüssen in Festkörpern unter Zuhilfenahme von Attosekundenlichtblitzen. „Das geht in die Richtung, elektronische Schaltungen aufzubauen, die zehntausend Mal schneller sind als derzeitige Computerchips“, berichtet Prof. Vrakking. Künftig seien sogar photonische Computer denkbar, die dann um einen Faktor 10 000 schneller würden.

Der Weg dorthin ist lang. Aber zwischen der theoretischen Deutung des photoelektrischen Effekts durch Albert Einstein und der massenhaften Einführung der Digitalfotografie sind ja auch fast hundert Jahre vergangen. Übrigens erhielt Einstein seinen Nobelpreis für eben diese Theorie und nicht etwa für die heute viel bekanntere Relativitätstheorie. Die hatte damals nicht einmal das gelehrte Nobelpreis-Komitee so recht verstanden. Grundlagenforschung braucht eben einen langen Atem.

Phys. Rev. Lett. 111, 033001 (2013)
DOI: 10.1103/PhysRevLett.111.033001
Ansprechpartner:
Prof. Dr. Marc Vrakking
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Max-Born-Str. 2A, 12489 Berlin
Tel.: 030-6392 1201
vrakking@mbi-berlin.de
Christian Neidel
Tel.: 030-6392 1238
neidel@mbi-berlin.de
Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.mbi-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Hauchdünn wie ein Atom: Ein revolutionärer Halbleiter für die Elektronik
23.02.2017 | Universität Bayreuth

nachricht Positronen als neues Werkzeug für die Forschung an Lithiumionen-Batterien: Löcher in der Elektrode
22.02.2017 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

Luftfahrt der Zukunft

23.02.2017 | Veranstaltungen

Problem Plastikmüll: Was können wir gegen die Verschmutzung der Meere tun?

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hauchdünn wie ein Atom: Ein revolutionärer Halbleiter für die Elektronik

23.02.2017 | Energie und Elektrotechnik

Sonnenschutz von der Natur inspiriert

23.02.2017 | Biowissenschaften Chemie

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungsnachrichten