Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenblick zeigt Verschleiß von Plastiksolarzellen

11.10.2016

Mit dem scharfen Röntgenblick von DESYs Forschungslichtquelle PETRA III haben Wissenschaftler der Technischen Universität München den Verschleiß von Plastiksolarzellen beobachtet. Die Untersuchung liefert einen Ansatz für eine verbesserte Herstellung, um die Langzeitstabilität solcher organischen Solarzellen zu erhöhen. Das Team um Prof. Peter Müller-Buschbaum stellt seine Beobachtungen an diesem Mittwoch in der aktuellen Ausgabe des Fachjournals „Advanced Energy Materials“ (Bd. 6, Nr. 19; online vorab veröffentlicht) vor.

Anders als bei konventionellen Solarzellen aus Silizium wird der Strom in organischen Solarzellen in einer aktiven Mischschicht aus zwei kohlenstoffbasierten Materialien erzeugt. Ist eines davon ein Polymer, spricht man oft von Plastiksolarzellen. Diese sind besonders vielversprechend, weil ihre Herstellung sehr kostengünstig und einfach ist.


Die innere Struktur der aktiven Schicht der untersuchten Solarzelle ohne Lösungsmittel (links), mit Lösungsmittel (Mitte) und nach Lösungsmittelverlust im Betrieb (rechts).

Bild: Christoph Schaffer / TU München

So lassen sich extrem leichte, biegsame und sogar halbtransparente Solarzellen über Druckverfahren auf flexiblen Kunststoffmaterialien erzeugen und damit vollkommen neue Anwendungsgebiete erschließen. Organische Solarzellen sind in der Regel allerdings weniger effizient in der Umwandlung von Sonnenlicht in elektrische Energie als siliziumbasierte, und sie haben bisweilen eine kürzere Lebensdauer.

Die innere Struktur der aktiven Schicht ist für organische Solarzellen von zentraler Bedeutung. Bei der Herstellung müssen sich die beiden Materialien der aktiven Schicht aus einer gemeinsamen Lösung entmischen, ähnlich wie sich Öltropfen in Wasser bilden.

„Es ist dabei wichtig, dass sich Plastikdomänen mit einer Größe von wenigen zehn Nanometern formen“, betont der Hauptautor der Studie, Christoph Schaffer, Doktorand aus der Gruppe von Müller-Buschbaum. „Nur so können in der aktiven Schicht effizient positive und negative Ladungsträger erzeugt und auch voneinander getrennt werden. Ist die Struktur zu grob oder zu fein, funktioniert dieser Prozess nicht mehr, und die Solarzelle verliert an Effizienz.“ Ein Nanometer ist ein millionstel Millimeter.

In modernen Plastiksolarzellen werden häufig sogenannte Low-bandgap-Polymere verwendet, die besonders viel Licht absorbieren. Sie benötigen oft während der Herstellung einen Lösungsmittelzusatz, um hohe Wirkungsgrade zu erreichen. Dieser Zusatz ist umstritten, weil er die Lebensdauer der Solarzellen weiter senken könnte.

Mit DESYs Röntgenlichtquelle PETRA III haben die Wissenschaftler den Verschleiß solcher Low-bandgap-Plastiksolarzellen mit Lösungsmittelzusatz näher untersucht. Dazu wurde eine solche Solarzelle in einem Sonnenlichtsimulator mit sonnenähnlichem Licht beleuchtet und kontinuierlich auf ihre elektrischen Kenndaten vermessen. Gleichzeitig durchleuchteten die Forscher die Solarzelle zu unterschiedlichen Zeiten mit dem scharf fokussierten Röntgenstrahl von PETRA III.

Somit konnten sie sich im Abstand von einigen Minuten ein Bild von der inneren Struktur der aktiven Schicht auf der Nanometerskala machen. „Mit diesen Messungen lassen sich Struktur und Leistungsdaten der Solarzelle verknüpfen und im Verlauf der Zeit verfolgen“, erläutert Ko-Autor Prof. Stephan Roth, Leiter der DESY-Messstation P03, an der die Versuche stattfanden.

„Die Daten zeigen, dass Domänen auf der Längenskala von wenigen zehn Nanometern während des Betriebs stark schrumpfen, und ihre geometrischen Grenzen zu der anderen Komponente verschwinden“, sagt Schaffer. Gleichzeitig liefern die Messungen Hinweise darauf, dass der Restgehalt an Lösungsmittelzusatz sinkt. Auf diese Beobachtungen führen die Wissenschaftler den gemessenen Effizienzverlust der Solarzelle zurück.

„Da es Indizien dafür gibt, dass der Restgehalt des Lösungsmittelzusatzes sinkt, müssen wir davon ausgehen, dass dieser Prozess die Lebensdauer der Solarzellen limitieren kann“, erläutert Müller-Buschbaum. „Es ist daher unabdingbar, nach Strategien zur Verfestigung der Struktur zu suchen. Dies könnte etwa durch chemische Vernetzung der Polymerketten oder durch maßgeschneiderte Verkapselungsmaterialien bewerkstelligt werden.“

Die Münchner Forscher hatten in einer vorangegangenen Studie bereits den Verschleiß eines anderen Typs von Polymersolarzellen beobachtet. Bei dieser Solarzellenart zeigte sich, dass die Effizienz dadurch sank, dass die aktiven Zentren im Laufe des Betriebs wuchsen. Das legte nahe, solche Solarzellen mit einer eigentlich suboptimalen, etwas zu feinen Struktur herzustellen, die in den ersten Betriebsstunden dann zur optimalen Größe heranwächst.

An diese Arbeit knüpft die neue Untersuchung an. „In unserer ersten Studie konnten wir sehen, dass die Effizienz durch eine Vergröberung der Struktur sinkt“, berichtet Schaffer. „In der aktuellen Studie passiert genau das Gegenteil. Dieses Verhalten entspricht ganz unseren Erwartungen, weil die Zusammensetzung der aktiven Schicht anders ist. Die Materialien in der ersten Studie tendieren dazu, stark zu entmischen. Hier ist nun das Gegenteil der Fall und man braucht den Lösungsmittelzusatz, um die benötigte Entmischung der Materialien für hohe Effizienzen zu erzeugen. Verschwindet im Betrieb der Lösungsmittelzusatz, verfeinert sich die Struktur wieder und entfernt sich damit von ihrem Optimum.“

Beide Untersuchungen liefern wichtige Ansätze für eine gezielte Optimierung der Produktion organischer Solarzellen, wie Koautor Roth betont: „Das Zusammenspiel der beiden Studien ist ein sehr schönes Beispiel dafür, wie Messungen mit Synchrotronstrahlung auf der atomaren Skala wichtige Erkenntnisse für die Forschung gerade in anwendungsnahen Gebieten wie dem der erneuerbaren Energien liefern können.“


Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom Bundesforschungsministerium BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Morphological Degradation in Low Bandgap Polymer Solar Cells – An In Operando Study; Christoph J. Schaffer, Claudia M. Palumbiny, Martin A. Niedermeier, Christian Burger, Gonzalo Santoro, Stephan V. Roth, and Peter Müller-Buschbaum
„Advanced Energy Materials”, 2016; DOI: 10.1002/aenm.201600712

Weitere Informationen:

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1113&am... - DESY-Pressemitteilung im Web
http://onlinelibrary.wiley.com/doi/10.1002/aenm.201600712/abstract - Originalarbeit

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht SmartMeter analysieren mit Algorithmen den Stromverbrauch
01.12.2016 | Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS

nachricht Energiehybrid: Batterie trifft Superkondensator
01.12.2016 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie